Design of the Programming Language Forsythe

John C. Reynolds

June 28, 1996
CMU-CS-96-146

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

To be reprinted in Algol-like Languages, edited by P. O’Hearn and R. D. Tennent,
Birkhauser, 1996

Abstract

This is a description of the programming language Forsythe, which is a descendant of Algol
60 intended to be as uniform and general as possible, while retaining the basic character of

its progenitor.

This document supercedes Report CMU-CS-88-159, “Preliminary Design of the Program-

ming Language Forsythe” [1].
©1996 John C. Reynolds 1 9960726 1 21

Research suuported by National Science Foundation Grant CCR-9409997.

BISTRIBUTION STATEMENT A |

Approved for public release;
Distribution Unlimited

ekl R e I
DTI0 QUaLzyy




[ e

Keywords: Forsythe, Algol-like languages, Algol 60, intersection types




v

1. Introduction

In retrospect, it is clear that Algol 60 [2, 3] was an heroic and surprisingly successful attempt
to design a programming language from first principles. Its creation gave a formidable
impetus to the development and use of theory in language design and implementation,
which has borne rich fruit in the intervening thirty-six years. Most of this work has led to
languages that are quite different than Algol 60, but there has been a continuing thread of
concern with languages that retain the essential character of the original language [4, 5]. We
feel that research in this direction has reached the point where it is desirable to design a
modern Algol-like language that is as uniform and general as possible.

This is the goal of the programming language Forsythe. We believe that it retains the
essence of Algol 60, yet is both simpler and more general. The key to achieving this combina-
tion of simplicity and generality is to exploit the procedure mechanism and the type system,
in order to replace a multitude of specialized features by a few general constructions.

The language is named after George E. Forsythe, founding chairman of the Computer
Science Department at Stanford University. Among his many accomplishments, he played a
major role in familiarizing American computer scientists (including the author) with Algol.

Before considering Forsythe in detail, we specify its location in the design space of pro-
gramming languages. As illustrated below, Forsythe lies on one side of each of three funda-
mental dichotomies in language design:
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First, it is a typed language. It has long been understood that imposing a type discipline can
yield major improvements in compile-time error detection and in the efficiency of run-time
data representations. However, type systems that are flexible enough to support sophisti-
cated programming techniques are a much more recent development.

Second, Forsythe has imperative features (i.e. assignment and control flow) as well as
a powerful procedure mechanism. Like all such languages, it suffers from the problems of
aliasing and interference. However, we believe that imperative programming is a fundamental
paradigm that should not be ignored in programming language design.

Finally, Forsythe uses call by name rather than call by value. For purely functional
languages this is merely a distinction between orders of evaluation, but for languages with
imperative features it is a fundamental dichotomy in the way that the imperative and func-
tional aspects are linked; one is tempted to speak of Algol-like versus ISWIM-like languages.

In any event, the following basic operational view, which is implicit in Algol 60, underlies
Forsythe and distinguishes it from such languages as ISWIM [6], Algol 68 [7], Scheme [8],
and ML [9]: The programming language is a typed lambda calculus with a primitive type
comm/(and), such that terms of this type, when reduced to normal form, are commands in
the simple imperative language. Thus a program, which must be a term of type comm,
is executed in two phases. First the program is reduced to normal form. (In Algol jargon,
the copy rule is repeatedly applied to eliminate procedure calls.) Then the resulting simple
imperative program is executed:

Reduction of lambda expressions (copy rule)
normal form

Execution of commands in the simple imperative language

The only complication is that, in the presence of recursion, the reduction phase may go on
forever, producing an infinite or partial “normal form”. Nevertheless, such an infinite term
can still be viewed as a simple imperative program; operationally, one simply implements
the two phases as coroutines.

Even in this more general situation, the above diagram still describes an essential re-
striction on the flow of information: Nothing that happens in the second phase ever affects
anything that happens in the first phase. Thus Forsythe inherits the basic property of the
lambda calculus that meaning does not depend upon the order or timing of reductions.
Indeed, reduction rules can be viewed as equations satisfied by the language.

In contrast, consider the situation in an ISWIM-like language such as Scheme or ML that
provides assignable function variables. If f is such a variable, then the effect of reducing
f(---) will depend upon when the reduction occurs relative to the sequence of assignments
to f that are executed in the imperative phase. In this situation, the procedure mechanism
is completely stripped of its functional character.
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2. From Algol to Forsythe: An Evolution of Types

The long evolution which has led from Algol 60 to Forsythe is too complex to recount here
in detail. However, to provide an overview of Forsythe and reveal its relationship to Algol, it
is useful to outline the development of the heart of the language, which is its type structure.
(In this introductory account, we retain the familiar notations of Algol, rather than using
the novel notations of Forsythe.)

An essential characteristic of an Algol-like language is that the variety of entities that can
be the value of a variable or expression is different from the variety of entities that can be
the meaning of identifiers or phrases. We capture this characteristic by distinguishing two
kinds of type (as in [5] and [10]):

o A data type denotes a set of values appropriate to a variable or expression.

e A phrase type, or more simply a type, denotes a set of meanings appropriate to an
identifier or phrase.

In Algol 60, there are three data types: integer, real, and boolean. In Forsythe, we use
more succinct names, int, real, and bool, and add a fourth data type, char, denoting the
set of machine-representable characters.

To capture the existence of an implicit conversion from integers to reals, we define a
partial order on data types called the subtype relation. We write § < &', and say that § is a
subtype of &' when either 6 = ¢ or § = int and §’ = real, i.e.

real
bool char

int

In Algol 60, the phrase types are the entities, such as integer, real array, and proce-
dure, that are used to specify procedure parameters. However, the phrase types of Algol 60
are not sufficiently refined to permit a compiler to detect all type errors. For example, in

both
procedure silly(z); integer z; y :=z + 1

and
procedure strange(z); integer z; z:=z +1

the formal parameter « is given the type integer, despite the fact that an actual parameter
for silly can be any integer expression, since z is evaluated but never assigned to, while an
actual parameter for strange must be an integer variable, since z is assigned to as well as
evaluated.




To remedy this defect, one must distinguish the phrase types int(eger) exp(ression) and
int(eger) var(iable), writing

procedure silly(z); intexp z; y :=z + 1
and
procedure strange(z); intvar z; z:=z + 1.
(In a similar manner, each of the other data types gives rise to both a phrase type of

expressions and a phrase type of variables.)

Like data types, phrase types possess a subtype relationship. Semantically, # < §’ means
that there is an implicit conversion from meanings of type 8 to meanings of type . But the
subtype relation can also be interpreted syntactically: 8 < 6’ means that a phrase of type 6
can be used in any context requiring a phrase of type #'. Thus, since a variable can be used
as an expression, intvar < intexp, and similarly for the other data types. Moreover, since
an integer expression can be used as a real expression, intexp < realexp. In summary:

realexp

/ ‘ boolexp charexp

realvar  intexp ’ ‘
‘ boolvar charvar

intvar

However, there is an unpleasant asymmetry here. It can be remedied by distinguishing,
in addition to expressions which can be evaluated but not assigned to, acceptors which can
be assigned to but not evaluated. Then, for example, we can write

procedure peculiar(z); intacc z; z :=0
to indicate that peculiar assigns to its parameter but never evaluates it.

Clearly, intvar < intacc, and similarly for the other data types. Moreover, realacc <
intacc, since an acceptor that can accept any real number can accept any integer. Thus the
subtype relation is

intacc realexp

‘ ’ boolacc boolexp characc charexp

realacc intexp \\ / \ /

’ ‘ boolvar charvar

realvar intvar

However, there is a further problem. In Forsythe, the conditional construction is gen-
eralized from expressions and commands to arbitrary phrase types; in particular one can
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construct conditional variables. Thus if p is a boolean expression, n is an integer variable,
and z is a real variable, one can write

if p then n else «

on either side of an assignment command. But when this construction occurs on the right of
an assignment, it must be regarded as a real expression, since p might be false, while when
it occurs on the left of an assignment, it must be regarded as an integer acceptor, since p
might be true. Thus the construction is an int(eger accepting), real (producing) var(iable),
which fits into the subtype relation as follows:

intacc realexp
realacc  (int, real) var intexp
realvar intvar

Next, we consider the types of procedures. In Algol 60, when a parameter is a proce-
dure, one simply specifies procedure for a proper procedure (whose call is a command),
or integer procedure, real procedure, or boolean procedure for a function procedure
(whose call is an expression). But to obtain full compile-time typechecking, one must use
more refined phrase types that indicate the number and type of parameters, e.g.

procedure(intexp, intvar)
to denote a proper procedure accepting an integer expression and an integer variable, or
real procedure(realexp)

to denote a real procedure accepting a real expression. (Note that this refinement introduces
an infinite number of phrase types.)

These constructions can be simplified and generalized by introducing a binary type con-
structor — such that § — 6’ denotes the type of procedures that accept # and produce &' or,
more precisely, the type of procedures that accept a single parameter of type # and whose
calls are phrases of type 6. For example, a real procedure accepting a real expression would
have type realexp — realexp.

To describe proper procedures similarly, it is necessary to introduce the type comm
to describe phrases that are commands (or in Algol jargon, statements). Then a proper
procedure accepting an integer variable would have type intvar — comm.

The idea that commands are not a kind of expression is one of the things that distinguishes
Algol-like languages from languages such as Scheme or ML, where commands are simply
expressions that produce trivial values while performing side effects. This distinction is even
sharper for Forsythe, where expressions cannot have side effects.
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To extend the typing of procedures to permit more than one parameter, one might in-
troduce a type constructor for products and regard, say, procedure(intexp, intvar) as
(intexp X intvar) — comm. However, as we will see below, the product-like construction
in Forsythe describes objects whose fields are selected by names rather than position. Thus
multiple-parameter procedures are more easily obtained by Currying rather than by the use
of products.

For example, procedure(intexp, intvar) becomes intexp — (intvar — comm) or,
more simply, intexp — intvar — comm, since — is right associative. In other words, a
proper procedure accepting an integer expression and an integer variable is really a procedure
accepting an integer expression whose calls are procedures accepting an integer variable
whose calls are commands. Thus the call p(a;,az) is written (p(a1))(a2) or, more simply,
p(a1)(az), since procedure application is left associative. (In fact, if the parameters are
identifiers or constants, one can simply write p a; a,.)

In general, the type
procedure(dy,...,0,)

becomes
0y —»--+-— 40, > comm,

and, for each data type 6, the type
6 procedure(b,,...,0,)

becomes
0y —---— 0, > bexp.

Moreover, this generalization includes the special case where n = 0, so that parameterless
proper procedures are simply commands and parameterless function procedures are simply
expressions. (Note that this simplification is permissible for call by name, but would not be
for call by value, where parameterless procedures are needed — as in LISP — to postpone
evaluation.)

To determine the subtype relation for procedural types, suppose §; < 6y and 6, < 6.
Then a procedure of type 6; — 8, can accept a parameter of type 8] (since this parameter
can be converted to type 6;) and its call can have type 8} (since it can be converted from 6,
to 65), so that the procedure also has type 87 — 6. Thus

If 6; < 6, and 6, < 6, then 0, — 6, < 0] — 6,

i.e. — is antimonotone in its first operand and monotone in its second operand.




For example, since intexp < realexp, we have

intexp — realexp

N

intexp — intexp realexp — realexp

N 7

realexp — intexp

We have already seen that comm(and) must be introduced as a primitive phrase type.
It is also useful to introduce a subtype of comm called compl(etion):

comm

compl

Essentially, a completion is a special type of command, such as a goto command, that never
returns control.

The advantage of distinguishing completions is that control structure can be made more
evident. For example, in

procedure sqroot(z,y, error); intexp z; intvar y; compl error;
begin if z < 0 then error; C end,

specifying error to be a completion makes it evident that C will never be executed when
z < 0.

As mentioned earlier, Forsythe has a type constructor for named products. The basic
idea is that the phrase type '

(L1:01, . .,Lnian)

is possessed by objects with fields named by the distinct identifiers ¢1,...,t,, in which the
field named ¢4 has type 0;. Note that the meaning of this phrase type is independent of the
order of the ¢: 0 pairs. We use the term “object” rather than “record” since fields need
not be variables. For example, one could have a field of type intvar — comm that could
be called as a proper procedure, but not assigned to. (Roughly speaking, objects are more
like class members in Simula 67 [11] than like records in Algol W [4].)

Clearly, the product constructor should be monotone:
Ifn>0and 6; <9 and ... and 6, < @, then

(t1:01, ..y tn:0n) < (41:07,...,0,:00).

In fact, a richer subtype relationship is desirable, in which objects can be converted by
“forgetting” fields, so that an object can be used in a context requiring a subset of its
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fields. This relationship (which is closely related to “multiple inheritance” in object-oriented
programming [12]) is expressed by

Ifn>m>0and §, <6;and ... and §,, < @/ then

(b3: 015 ytn:0n) < (01205, ytm2 6L

For example,
partno: int cost: real

N

(partno: int, cost: real)

(partno: intvar, cost: realvar)

At this point, we have summarized the type structure of Forsythe (then called “Idealized
Algol”) as it appeared in about 1981 [5]. Since then, the language has been generalized, and
considerably simplified, by the introduction of intersection types [13, 14, 15].

(At the outset, a caution must be sounded that this use of the word “intersection” can
be misleading. If one thinks of types as standing for sets, than the intersection of two types
need not stand for the intersection of the two corresponding sets. In earlier papers, we used
the term “conjunctive type”, but this was equally misleading in other contexts, and never
became widely accepted.)

The basic idea is to introduce a type constructor &, with the interpretation that a phrase
has type 6; & 0, if and only if it has both type #; and type 6. This interpretation leads to

the subtype laws
0,& 0, < 0,

01 & 0, < 0,
If 0 <6, and § <0, thend <0, &0,,

which assert that 6; & 0, is a greatest lower bound of 6; and 6,. (Note that the introduction
of the intersection operation makes the subtype relation a preorder rather than a partial
order, since one can have distinct types, such as 6; & 6, and 0, & 6,, each of which is a
subtype of the other. In this situation, we will say that the types are equivalent.)

We will see that intersection types provide the ability to define procedures with more
than one type. For example

procedure poly(z); z X = + 2

can be given the type (intexp — intexp) & (realexp — realexp). At present, however,
the main point is that intersection can be used to simplify the structure of types.
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First, the various types of variables can be regarded as intersections of expressions and
acceptors. For example, intvar is intexp & intacc, realvar is realexp & realacc, and
(int, real) var is realexp & intacc.

Second, a product type with more than one field can be regarded as an intersection of
product types with single fields. Thus, instead of

(L1101, . -,Ln:on) ’

one writes

b & &0 0, .
Note that the field-forgetting relationship becomes a consequence of 8, & 6, < 0;.

A final simplification concerns acceptors. The meaning of a  acceptor a (for any data type
6) is completely determined by the meanings of the commands a := e for all § expressions
e. Thus a has the same kind of meaning as a procedure of type dexp — comm. As a
consequence, we can regard dacc as an abbreviation for éexp — comm, and a := e as an
abbreviation for a(e). (As discussed in Section 8, this treatment of assignment as procedure
call is a controversial generalization of the usual concept of assignment.)

3. Types and the Subtype Relation

Having sketched its evolution, we can now define the type system of Forsythe precisely. The
sets of data types, primitive (phrase) types, and (phrase) types can be defined by an abstract
grammar:
6 ::=int |real |bool | char (data types)
p = 6| value|comm | compl (primitive types)
f:=p|l0—>0|:0|ns|0&0 (types)
where the metavariable ¢ ranges over identifiers.

Here there are three changes from the previous section. Expression types are now named
by their underlying data types; for example, intexp is now just int. A new primitive type
value stands for the union of all the data types; its utility will become apparent in Section
4. Finally, a new phrase type ns (for “nonsense”) has been introduced; it is possessed by all
(parsable) phrases of the language, and can be viewed as a unit for the operation &, i.e. as
the intersection of the empty set of types.

The subtype relation <,im for primitive types is the partial order

value
/ ‘ \ comm

real bool char ‘

compl

int




For types, < is the least preorder such that
0 <ns

61 &0, < 0,
01 & 0; < 0,
If0<6,and 6§ <6, then 0 <6, &0,
If p <prim p' then p < p’
If 9 <@ then ¢:0 < 1: 6
If #; < 0, and 0, < 6, then 8; — 6, < 0] — 6,
0:01 & 0:0y < (61 & 62)
(0 —01)& (0 —0;) <0— (6, &86,)
ns < i:ns
ns < —ns.

We write 6 ~ ', and say that 6 and ¢’ are equivalent, when 8 < 6’ and §' < 8. The first four
relationships establish that ns is a greatest type and that 6, & 6, is a greatest lower bound
of 6, and 0,. Note that we say “a” rather than “the”; neither greatest types nor greatest
lower bounds are unique, since we have a preorder rather than a partial order, However, any
greatest type must be equivalent to ns, and any greatest lower bound of §; and 6; must be
equivalent to 6; & 6,.

The fact that ns is a greatest type and & is a greatest lower bound operator has the
following consequences:

8 & (8, & 65) =~ (61 & 03) & 05
0&ns~0
ns&f ~ 6
6, & 0, ~ 0, & 0,
0& 6 ~0
If 6, < 6] and 6, < 6, then 0, & 0, < 0, & 0,
0<0,&0,iff 0 <0,and 0<80,.

The next three relationships in the definition of < assert that primitive types are related
by <prim, that the object-type constructor is monotone, and that — is antimonotone in
its first operand and monotone in its second operand. The last four relationships have the
following consequences:

(01 & 05) ~ 1:6, & 1: 0,
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(:NS >~ 1ns

§ — ns ~ns .

The first two of these equivalences show that intersection distributes with object constructors
(modulo ~) and with the right side (but not the left) of —. The last two equivalences are
analogous laws for the intersection of zero types.

It can be shown that every pair of types has a least upper bound (which is unique modulo
~). In particular, the following equivalences suffice to compute a least upper bound, 6, LI §;,

of any types 6; and 6,:
01 U 02 ~ 02 L 01

6 ns ~ns
61 U (02 & 63) ~ (61 L 62) & (6, U 65)
pUe:0 ~ns
pU (6 — 62) ~ns
t:0; U (0 — 03) ~ ns
p1 U p2 > py Uprim p2 Wwhen py Uprim p2 exists
p1 U py >~ ns when py Uprm p2 does not exist
007 U e ~ (6, U0;)
t1:01 U g:02 ~ ns when ¢ # ¢
(61 — 07) U (62 — 65) ~ (6, & 6,) — (07 L 63) .

The types int, real, bool, char, value, comm, compl, and ns are actually predefined
type identifiers (whose meaning can be redefined by the lettype definition to be discussed
later, but which take on standard meanings outside of such redefinitions). Additional pre-
defined type identifiers are provided to abbreviate various commonly occurring nonprimitive

types. As discussed in the previous section, when §é is any of the character sequences int,
real, bool, or char that denote data types,

def
dacc = § — comm
. def «
(e.g. intacc = int — comm), and

svar ¥ § & Sacc .

There are also abbreviations for commonly occurring types of sequences. In general, a
sequence s of element type § and length n is an entity of type (int — 6) & len:int such
that the value of s.len is n and the application s i is well-defined for all integers i such that
0 < ¢ < n. (Of course, the proviso on definedness is not implied by the type of the sequence.)
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The following type identifiers are predefined to abbreviate specific types of sequences:

sseq ¥ (int — 6) & len:int

[=9)

(
Saceseq & (int — Sacc) & len:int
(

§varseq & (int — évar) & len:int
commseq ¥ (int —» comm) & len: int
complseq & (int — compl) & len:int .

For instance, a évarseq, in Algol terminology, is a one-dimensional § array with a lower
bound of zero and an upper bound one less than its length. A §seq is a similar entity whose
elements can be evaluated but not assigned to, and a éaccseq is a similar entity whose
elements can be assigned to but not evaluated. For example, charseq is the type of string
constants.

4. The Semantics of Types

To describe the meaning of types, we will employ some basic concepts from category theory.
The main reason for doing so is that, by formulating succinct definitions in terms of a
mathematical theory of great generality, we gain an assurance that our language will be
uniform and general.

A second reason is that the abstract concept of a category establishes a bridge between
intuitive and rigorous semantics. Intuitively, we think of a type as standing for a set, and
an implicit conversion as a function from one such set to another. But since our language
permits nonterminating programs, types must denote domains (i.e. complete partial orders
with a least element) and implicit conversions must be continuous functions. Moreover, a
further level of complication arises when one develops a semantics that embodies the block
structure of Algol-like languages; then types denote functors and implicit conversions are
natural transformations between such functors [5, 16, 17].

However, the choice between these three different views is simply a choice between three
different “semantic” categories:

o SET — in which the objects are sets, and the set of morphisms S — S’ is the set of
functions from S to S’.

¢ DOM — in which the objects are domains, and D — D’ is the set of continuous
functions from D to D’.

e PDOM?® — in which the objects are functors from a category ¥ of “store shapes” to
the category PDOM of predomains (complete partial orders, possibly without least

elements) and continuous functions, and F — F’ is the set of natural transformations
from F' to F".
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Therefore, if we formulate the semantics of types in terms of an arbitrary category, assuming
only properties that are possessed by all three of the above categories (i.e. being Cartesian
closed and possessing certain limits), then we can think about the semantics in the intuitive
setting of sets and functions, yet be confident that our semantics makes sense in a more
rigorous setting.

Thus we will define types in terms of an unspecified semantic category, while giving
explanatory remarks and examples in terms of the particular category SET (or occasionally

DOM).

For each type 8, we write [0] for the object (e.g. set) denoted by §. Whenever 8§ < ¢,
we write [ < 6] for the implicit conversion morphism (e.g. function) from [8] to [§']. Two
requirements are imposed on these implicit conversion morphisms:

e For all types 8, the conversion from [f] to [§] must be an identity:
[0 <6] =1 [e] -
e Whenever § < §' and ¢’ < 0", the composition of [§ < '] with [§' < 6"] must equal
[0 < 67], i.e. the diagram

10 <01

- [0
II@ < 0//]] ﬂg/ < 0//]]

[0

must commute.

These requirements coincide with a basic concept of category theory: [—] must be a functor
from the preordered set of types (viewed as a category) to the semantic category.

The above requirements determine the semantics of equivalence. When 6 ~ ', the
diagrams

o —L0<01

[6" < 6]

1] [] [4]

[[0 S 0]] = ][9]] |[(9' S 0]] and |I9’ S (9']] = I|[g/]| |[0 S 0']]

| 191 [0]
both commute, so that [f] and [0] are isomorphic, which we denote by [0] ~ [¢']. (Note,
however, that nonequivalent types may also denote isomorphic objects.)

Next, we define (up to isomerphism) the meaning of each type constructor:

13




Procedures — To define —, we require the semantic category to be Cartesian closed,
and define [0 — 6] to be [0] = [#'], where = denotes the exponentiation opera-
tion in the semantic category. In SET (DOM), [0] = [¢'] is the set (domain) of all
(continuous) functions from [6] to [6'].

Object Constructors — We define [¢: 6] to be an object that is isomorphic to [6].

Nonsense — We define [ns] to be a terminal object T, i.e. an object such that, for
any object s, there is exactly one morphism from s to T. In SET or DOM a terminal
object is a set containing one element. (Thus even nonsense phrases have a meaning,
but they all have the same meaning.)

Intersection — Because of its novelty, we describe the meaning of intersection in more
detail than the other type constructors. Basically, the meaning of 8, & 0, is determined
by the meanings of 64, 6;, and their least upper bound 6; Ui ;. From 6; & 0,, we
can convert to 6; and from there to 6; LI f,, or we can convert to #; and from there
to 01 U 0,; clearly the two compositions of conversions should be equal. Moreover,
whenever 0 < 0; & 0, the composite composition from 8 to 8; & 6, to 0; should equal
the direct conversion from 6 to 6;, and similarly for ;. In other words, in the diagram

[[01 LI 02]]

6, <6,180,] [0, < 6, L6,]

[[(91]] 1[02]]

[6, & 0, < 04] [61 & 65 < 6]

[6]1
the inner diamond must commute and, for all 8 such that 6 < 6, &8s, the two triangles
must commute.

However, these requirements are not sufficient to determine [6; & 6,]. To strengthen
them, we replace [0] by an arbitrary object s and [§ < 6,] and [ < 6,] by any functions
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fi and f; that make the outer diamond commute, and we require the “mediating
morphism” from s to [0; & ;] to be unique. Specifically, we define [§; & 6] by
requiring that, in the diagram

[[01 L 02]]

[6, <6, U6,] [6; < 6, U 6]

[6:] , [6-]

[6, & 6, < 64] [61 & 0, < 05]

[61 & 65]
4

|
|
I
|
I
s
the inner diamond must commute and, for all objects s and morphisms f; and f,

that make the outer diamond commute, there must be a unique morphism from s to
[6: & 6] that makes the two triangles commute.

Clearly, this strengthening is something of a leap of faith. Thus it is reassuring that
our definition coincides with a standard concept of category theory: we have defined
[01 & 65] to be the pullback of [6:], [65], and [0, U ;] (which is unique up to isomor-
phism).

For sets or domains, the pullback is
[[01 &02]] ~ {(Sl,'l,m'g) ’ Iy € [[(91]] and I9 € lwgﬂ and [[01 S 01 Ll02]]:v1 = [[02 S 01 U92]1$2 } .

(For domains, one must require all implicit conversion functions to be strict.) In other
words, a meaning of type 6, & 6, is a meaning of type 6, paired with a meaning of type
02, subject to the constraint that these meanings must convert to the same meaning
of type 6, Li ,.

The following are special cases of the definition of intersection. Although we describe these
cases in terms of SET and DOM, basically similar results hold for any semantic category
that is Cartesian closed and possesses the pullbacks necessary to define intersection.
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o If 6; U8, ~ ns then the constraint
[6: < 61U 62)zy = [02 < 61 U]z,
always holds, since both sides of the equation belong to the one-element set [ns]. Thus
[61 & 62] = [64] x [62] -
For example,
[intvar] = [int &(int — comm)] = [int] x [int — comml]
[e: 01 & (62 — 63)] = [e: 61] % [02 — 03] = [61] x [0 — 6]
and, when ¢; # ¢o, |
[er: 01 & 12: 03] & [e1:61] X [ea: 02] = [64] x [62] -
o If 6, < 05, so that 8; L1 6, = 0, then
[6: & 02] % { (1, 22) | 21 € [6:] and @5 € [0:] and [0: < b3]a1 = o3 | ~ [6:] -

For example, |
[int & real] ~ [int]

[compl & comm] =~ [compl] .

o If [0,] and [f,] are subsets of [6; U6,], and [6; < 6,L162] and [0; < 6;U16,] are identity

injections, then
|]:191 & 02]] ~ { (.’El,wg) | z € [[01]] and X9 € [[92]] and 1 = T2 } ~ [[01]] N [[02]] .

In this special case, the intersection of types does correspond to the intersection of
sets.

An example of this case arises when 6, and 6, are data types with no implicit conversion
between them, such as int and char. In this case, their least upper bound is value,
which stands for the union of the data types, so that the implicit conversions into
value are identity injections. Thus,

[int & char] = [int] N [char] .
This is the purpose of introducing the type value. Had we not done so, we would have
int U char = ns, which would give [int & char] ~ [int] x [char].

In Forsythe, the sets denoted by the data types real, bool, and char are disjoint (and
the set denoted by int is a subset of that denoted by real), so that intersections such
as int & char denote the empty set. However, this is a detail of the language design,
while the preceding argument is more general.
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The above arguments are based on the intuition that data types denote sets of values.
In fact, however, data types such as int and char, when they are used as phrase
types, denote sets of meanings appropriate to kinds of expressions. Specifically, in a
domain-theoretic model,

intfj=5—> 2, [char]=S—->C, [value]=S5—-V,,

where S is the set of states; Z,, C\, and V| are set of integers, characters, and values,
made into flat domains by adding a least element; and Z and C are subsets of V. Even
in this richer setting, however, it is still true that the conversion functions from [int]
and [char] into [value] are identity injections.

e Finally, we consider the intersection of procedural types. First, we must define the
implicit conversions between such types. If 6] < 6; and 8, < ), then the conversion of
f €61 — 62] to [0; — 65] is obtained by composing f with appropriate conversions
of its arguments and results:

MOV Y ey I

[63 2
[6; < 61] [0, < 03]
[6.] ! - [62]

or as an equation,
[0 — 62 < 8 — 1 = [0, <] £ 5 [6: < O3],
where ; denotes composition in diagrammatic order.

From the definition of intersection, by substituting the equation for the least upper
bound of two procedural types, and using the above equation for the implicit conversion
of procedural types, we obtain

[(61 — 6)) & (62 — 63)] =~
{<f1,f2) I f1 €61 — 0;] and f, € [0; — 65]
and [01 — 07 < (61 & 85) — (01 L1 05)]f1 = [62 — 05 < (61 & 62) — (6, L 6))] 2 }
= {(f1,f2> I fie[0h — 6] and fz € [0, — 6]
and [0 & 6, < 01]; i[04 < 0, L 05] = [6: & 05 < 0] 5 fo; [0, < 0, L1 6] }.

Here the constraint on f; and f; is the commutativity of a hexagon:

() L — Y

um&%Séy/ \¢§smum

[6: & 65] CAREA

nm&%ggh\ /4é§%um

([92]] f2 g [[0;]]
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This constraint implies that the “versions” of a procedure whose type is an intersection
must respect implicit conversions — which is what distinguishes such a procedure from
the usual notion of a “generic” procedure. For example, since int & real = int and
int Ureal = real (taking = rather than ~ here simplifies the argument),

[(int — int) & (real — real)] ~
{<f17f2> ’ f1 € [int — int] and f; € [real — real]
and fi ; [int < real] = [int < real] ; f; } .

Here the hexagon collapses into a rectangle, so that f; and f; must satisfy -

h

Jint] ——————[int]

[int < real] [int < real]

[real] f2 [real]

On the other hand,
[(int — int) & (char — char)] = [int — int] x [char — char],

since in this case the hexagonal constraint on f; and f; is vacuously true because
[int & char] is the empty set. ‘ '

5. Phrases and their Typings

We now introduce the phrases of Forsythe and give rules for determining their types. Specif-
ically, we will give inference rules for formulas called typings.

A type assignment is a function from a finite set of identifiers to types. If « is a type
assignment, then [7 | ¢: 0] denotes the type assignment whose domain is dom 7 U {¢}, such
that [7 | ©:0]c = 0 and [7 | : 0] = 7 when ¢/ # . We write [7 | ¢1:01 | --+ | tn:0,] to
abbreviate [« [7 | ¢1:01] - | en: 0]

If 7 is a type assignment, p is a phrase, and 0 is a type, then the formula 7 F p : 0, called
a typing, asserts that the phrase p has the type 8 when its free identifiers are assigned types
by .

An inference rule consists of zero or more typings called premisses followed (after a hori-
zontal line) by one or more typings called conclusions. The rule may contain metavariables
denoting type assignments, phrases, identifiers, or types; an instance of the rule is obtained by
replacing these metavariables by particular type assignments, phrases, identifiers, or types.
(Some rules will have restrictions on the permissible replacements.) The meaning of a rule
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is that, for any instance, if all the premisses are valid typings then all of the conclusions are
valid typings.

First, we have rules describing the behavior of subtypes, the nonsense type, and intersec-
tions of types:

e Subtypes (often called subsumption)
Thp:6

A when § < ¢’
Thp:

e Nonsense
7k p:ns

o Intersection
mkp:6;

Tk p:0y
Thp:0; &0,

Then there are rules for typing identifiers, applications (procedure calls), and conditional
phrases:

e [dentifiers
R0 when ¢ € dom =

e Applications
ThEp:6—0
Thp: 0

ThEpipy: @
e (Conditionals
7 I p; : bool
T py: b
whps:d

7 - if p; then p; elseps : 6

Notice that the conditional construction is applicable to arbitrary types.

Next we consider abstractions (sometimes called lambda expressiohs), which are used
to denote procedures. Here there are two cases, depending upon whether the type of the
argument to the procedure is indicated explicitly. In the explicit case we have:

o Abstractions (with explicit typing)
(7|0, ]Fp: @
T (Al l---10,.p): 0; > 0
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In this rule, notice that 8; must be one of a list of types appearing explicitly in the abstraction
(separated by the alternative operator [). For example, under any type assignment, the

abstraction
Ar:int. z x z + 2

has type int — int, while the abstraction

Az:int lreal. z X £ + 2

has both type int — int and type real — real, so that, by the rule for intersection, it also
has type (int — int) & (real — real). (Note the role of the colon, which is always used in
Forsythe to specify the types of identifiers or phrases.)

In contrast, in the case where the argument is implicitly typed, we have:
e Abstractions (with implicit typing)

[7]|e:0]Fp:@
7k (Ae.p):0—6

Here the abstraction provides no explicit constraints on the type 6. For example, for the
abstraction Az. z X z + 2, one can use this rule to infer either of the types int — int or
real — real. More vividly, for the abstraction Az. z, one can infer any type of the form

9 — 0.

At this point, one might ask why one would ever use explicit typing. Sensible answers
are to make the program more readable, or to insure that a procedure has the typing one
expects, rather than just some typing that makes the overall program type-correct. But a
more stringent answer is that it has been proven that there is no algorithm that can typecheck
an arbitrary implicitly typed program in the intersection type discipline [13, 14, 15]. Thus
the Forsythe implementation requires some explicit type information to be provided. The
exact nature of this requirement is described in Appendix C.

Next there are constructions for denoting objects and selecting their fields:

e Object Construction
mkp:0

Tk (=p):(a0)

e Field Selection

mkp:(e6)
Tk pe:0

The first of these forms denotes objects with only a single field; objects with several fields
can be denoted by the merge construction, which will be described later. Note the role of
the connective =, which is always used to connect identifiers with their meanings.

Then comes a long list of rules describing various types of constants and expressions:
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e Constants

7 I (nat const) : int

7 b (real const) : real

7 k- (char const) : char

7 b (string const) : charseq

e Arithmetic Expressions

e Relations

7 p; : real
7 I py : real

©Fp
©kp
T p
T m;
T p
T p

:p2
¢P2

<p2

<p::

> P2
> P2
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7 I p; : bool
7 = ps : bool

7l'|'"p1 :p22b001
7 - p1 # ps : bool

7w p:int 7k p:real
7wk +p:int 7k +p:real
Tk —p:int T —p:real
7w pp:int
7 b po :int 7 p; : real
b py+py:int 7 I ps : real
Tk p—py:int n F py + ps : real
Tk p X py:int 7 py — py : real
Tk p+py:int 7w p1 X py : real
m F pyremp, : int 7 F pi/ps : real
7 b py*%py :int
7 F pp s real
7 py :int
7w F py Tps:real
7 bk py : char
7 F po : char
: bool 7 p1 = p2 : bool
: bool 7 F p1 # p2 : bool
: bool 7 p1 < ps : bool
bool 7 F py < pg: bool
: bool 7 F p1 > ps : bool
: bool 7 p; > py : bool




o

e Boolean Expressions
7 p:bool

7 ~p:bool

7 F p1 : bool
7 F p2 : bool

7T|_p1 /\pzibOOl
7wk p1 Vps: bool
7 F p1 = ps : bool
7 p1 < p2 : bool

Here the only real novelty is the provision of two operators for exponentiation: T accepts a
real and an integer, and yields a real, while *x accepts two integers, and yields an integer
(giving an error stop if its second operand is negative). The boolean operators = and <
denote implication and equivalence (if-and-only-if) respectively.

As in Algol, the semicolon denotes sequential composition of commands. But now it can
also be used to compose a command with a completion, giving a completion:

° Sequ‘ential Composition

7 F p; : comm 7 F p; : comm
7 F py : comm 7 I py : compl
7 F p1;ps : comm 7 I py; pe : compl

Two iterative constructions are provided: the traditional while command, and a loop con-
struction which iterates its operand ad infinitum (i.e. until the operand jumps out of the
loop by executing a completion):

e while Commands
7 F p, : bool

7 I py : comm

7  while p; do p; : comm

e loop Completions
7 p:comm

7 I loop p : compl

There is also a phrase whose execution causes an error stop, with a message obtained by
evaluating a character sequence:

e Error stops
7 F p: charseq

7 errorp: 6
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Notice that errorp is a phrase that can have any type.

In place of the procedure declarations of Algol, Forsythe provides the more general let-
definition construct invented by Peter Landin. In the implicitly typed case:

¢ Nonrecursive Definitions (with implicit typing)

Tk p 6y
Tk p, 0,
[7]e:01 ]| ni0n]Fp:6

nklety =p1,...,tn =prinp: 0

For example, in place of the Algol block

begin procedure p(z); 0 z; Byoc; B end,

one can write
let p = Az: 0. Byrocin B .

Such definitions are not limited to procedures. One can write
letz =3inB,

which will have exactly the same meaning as the phrase obtained from B by substituting 3
for z. Note, however, that this is not a variable declaration; « has the type int (the type of
3) and cannot be assigned to within B. Moreover, if y is an integer variable then

letz=yinB

has the same meaning as the phrase obtained from B by substituting y for z, i.e. z is defined
to be an alias of y.

Definitions can also be explicitly typed, indeeed one can mix implicit and explicit typing
in the same let-construction. To describe this situation, we adopt the convention that,
when an inference rule contains the notation {---}’, it stands for two rules, obtained (i)
by deleting the notation, and (ii) by replacing it by the contents of the braces. (When the
notation occurs n times, the rule stands for the 2" rules obtained by taking all possible
combinations.) Using this notation, we have a general rule that includes the previous one as
a special case.

e Nonrecursive Definitions

7T|_p1:01
T pn:l,
[7]e:61 |-+ | en:b ] p: 0

rhletu{:0,} =pi,...,0.{:0,} =p,inp: 0
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Here, the explicit occurrence of :6; in the definition constrains the type 6; to be used in
an application of the rule, while the absence of such an occurrence allows ; to be chosen
arbitrarily. (Notice that the alternative operator | cannot be used in let constructions, nor
in the recursive definitions discussed below.)

For example, in place of the procedure definition displayed earlier, one can specify the type
of the procedure in the definition (instead of specifying the type of the procedure argument
in the abstraction):

let p: 8 — comm = Az. Byocin B

There is also an alternative form of the nonrecursive definition,

letinline s {:6,} = p1,...,tn{: 6.} = ppinp,

that has the same typing behavior and semantics as the let form, but causes the procedures
or other entities being defined to be compiled into inline code.

Recursion is provided in two ways. On the one hand, there is a fixed-point operator rec:

e Fixed Points
thkp:0—40

wFrec:f.p:0

Notice that explicit typing is required here.

On the other hand, there is a form of recursive definition:

e Recursive Definitions

[7]e1:6y || tn:bn] b p1:by

(7] e1:01 |- | tn:On] F pn 0y

[7]e:by | | tn:bp]p: 0

7 - letreci;:0y,...,1,:0, wherev, = py,...,t, = pyinp: 0

In this form, the recursively defined identifiers and their types must be listed before the
definitions themselves, so that the reader (and compiler) knows that these identifiers have
been rebound, and what their types are, before reading any of the p;.

To keep the above rule simple, we have assumed that the two lists in a recursive definition
define the identifiers ¢, ..., ¢, in the same order. In fact, however, the order of the items in
each of the lists is arbitrary. However, for both the recursive and nonrecursive definitions,
t1, - .., tn must be distinct identifiers.

Next we consider a construction for intersecting or “merging” meanings. Suppose p; has
type 01, p2 has type 0,5, and 6, U 0; ~ ns, so that [6; & 6;] = [01] X [02]. One might hope
to write py, p; to denote a meaning of type 6, & 0.
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Unfortunately, this conflicts with the behavior of subtypes, since p; and p, might have
types 6} and 6, such that 6] < 6; and 6, < 6, but 8] U6, % ns. For example, although
(a = 3,b =4) and b = 5 respectively have types a:int and b:int, whose least upper bound
is ns, the phrase

would be ambiguous.

Our solution to this problem is to permit p;, p; only when p, is an abstraction or an object
construction, whose meaning then overwrites all components of the meaning of p; that have
procedural types, or all object types with the same field name. The inference rules are:

e Merging
[7|e:0;]Fpa: 0

7k (pr, Ae{i011---10,) po) : 0, = ¢

TEpiip
rF (A0 1---10,) p) : p
Tb oy (n:0)
7k (pr, Ae{:01 110, p2) : (11:6)
| Tk opg:0
mF(pr, 0 =p2) i (26)
Thpiip

7""‘(1%,&5])2):/)

Thp:0—6

Tk (p,t=py):0— 6

Tk p:(a:0)
bk (p1,0 = pa): (41:0)

when ¢ # ¢

Next, we introduce a construction for defining a sequence by giving a list of its elements:

e Sequences
Tk po:0

7r|:—p.1-0 whenn > 1

7 I seq(po,...,Pn-1) : (int — 0) & len:int
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The effect of this construction is that, if e is an integer expression with value k such that
0 <k <n,then

sed(po,- - Pa-1)

has the same meaning as p; (and thus can be used in the role of a case construction).
Moreover,
seq(po, . - -y Pn—1)-len

is an integer expression with value n.

Finally, we introduce yet another form of definition, to permit the user to let identifiers
stand for types. The types occurring in phrases are generalized to type expressions that can
contain type identifiers, which are given meaning by the inference rule

e Type Definitions

Tk (p/t,eestn = 0145,y 00:): 0 where 1 <4 <myq,...,n <1, <m,

ol (lettypeL1 = 01,1""|01,m17 B Egn,1||0nymninp) : 0

where (p/t1,... 00 — 014;,...,0,;,) denotes the result of simultaneously substituting 01,5
.y On;, for the free occurrences (as type identifiers) of ¢y, ..., ¢, in type expressions within
p. (As with the definitions described earlier, ¢1,.. ., ¢, must be distinct identifiers.)

As a simple example,
lettypet = intinAz:¢. Ay:t. 2 xy +2

will have type int — int — int. Notice that this is a transparent, rather than opaque, form
of type definition; e.g. within its scope, ¢ is equivalent to int, rather than being an abstract
type represented by integers (which would make the above example ill-typed).

Using the alternative operator in this construction provides another way to define proce-
dures with multiple types. For example,

lettypet = int Irealin Az:t. dy:t. 2 x y + 2

will have both type int — int — int and real — real — real. (The use of the alternative
operator in type definitions was suggested by Benjamin Pierce [18].)

The same string of characters can be used as both an ordinary identifier and as a type
identifier without interference. A change in its binding as an ordinary identifier has no effect
on its meaning as a type identifier, and vice-versa.

6. Predefined Identifiers

In place of various constants, Forsythe provides predefined (ordinary) identifiers, which may
be redefined by the user, but which take on standard types and meanings outside of these
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bindings. In describing these identifiers, we simply state the type of their unbound occur-
rences, e.g. we write true: bool as an abbreviation for the inference rule

7 F true : bool When frue ¢ domw .

In the first place, there are the usual boolean constants, a skip command that leaves the
state unchanged, and a standard phrase of type ns: '

true: bool false: bool

skip: comm null:ns .

(Of course, there are many other nonsense phrases — phrases whose only types are equivalent
to ns — which are all too easy to write, but null is the only such phrase that will not activate
a warning message from the compiler. The point is that there are contexts in which null is
sensible, for example as the denotation of an object with no fields.)

The remaining predefined identifiers denote built-in procedures. Four of these procedures
serve to declare variables. For § = int, real, bool, or char:

newdvar: § —
((6var — comm) — comm
& (6var — compl) — compl
& (6var — int) — int
évar — real) — real

& (
& (évar — bool) — bool
&(

évar — char) — char) .

The application newdvar init p causes a new 8 variable to be added to the state of the
computation; this variable is initialized to the value init, then the procedure p is applied to
the variable, and finally the new variable is removed from the state of the computation when
the call of p is completed (or when the execution of a nonlocal completion causes control to
escape from p so that the new variable can no longer be assigned or evaluated.) Thus

newintvar init Az. B
is equivalent to the Algol block
begin integer z; z := init; B end.
The multiplicity of types of the newévar procedures permits variables to be declared

in completions and expressions as well as commands. Within expressions, however, locally
declared variables, like any other variables, can be evaluated but not assigned.
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Four analogous procedures are provided for declaring variable sequences:

newbvarseq: int — (int — §) —
((6varseq — comm) — comm
& (évarseq — compl) — compl
évarseq — int) — int

évarseq — bool) — bool

& (
& (§varseq — real) — real
& (
& (

dvarseq — char) — char) .

The application newévarseq ! init p causes a new § variable sequence of length [ to be
added to the state of the computation; the elements of this sequence are initialized to values
obtained by applying the procedure init, and then the procedure p is applied to the sequence.
Thus

newintvarseq | init Az. B

is equivalent to the Algol block

begin integer array z(0: 1 —1);
begin integer :;
for i :=0tol—1do z(i) := init(s)
end;

B

end .

In essence, this approach to the declaration of variables and sequences is a syntactic
desugaring of the conventional form of declarations into the application of a procedure;
procedures such as newintvar init or newintvarseq | init that are intended to be used this
way are called declarators. The advantage of this view is that the user can define his own
declarators or declarator-producing procedures. For example (as we will illustrate later),
the user can define his own declarators for any kind of array for which he can program the
index-mapping function.

Another declarator is provided for the declaration of completions that cause control to
escape from a command. The procedure

escape: (compl — comm) — comm

applies its parameter to a completion whose execution causes immediate termination of the
application of escape. Thus
escape Me.C

is equivalent to the Algol block
begin C’; e:end ,
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where C' is obtained from C by substituting goto e for e.

Facilities for input and output are also provided by declarators. For output, there is

newoutchannel: charseq —

((characc — comm) — comm

& (characc — compl) — compl) .

The application newoutchannel s p opens the file named by s for output and applies the
procedure p to an output channel ¢, which has type characc. Each time p assigns a character
to ¢, the character is output to the file. When the call of p is completed (or when the
execution of a nonlocal completion causes control to escape from p so that ¢ can no longer
be executed), the file is closed. (Our choice of automatic file-closure upon block exit is based
on a belief that, in an Algol-like language, file buffers should obey the same stack discipline
as variables.)

Since output channels are character acceptors, one might expect input channels to be
character expressions, but this would violate the principle that expressions must not have
side effects. Instead, an input channel has type (characc & eof: compl) — comm, so that
the declarator for input has type

newinchannel: charseq —

((((characc & eof : compl) — comm) — comm) — comm

& (((characc & eof : compl) —» comm) — compl) — compl) .

The application newinchannel s p opens the file named by s for input and applies the
procedure p to an input channel ¢. Each time p executes a call ¢(a, eof = k) the next
character is read from the file and passed as an argument to the character acceptor a, unless
an end-of-file has occurred, in which case the completion k is executed. When the call of p
is completed (or when a nonlocal completion causes an escape from p), the file is closed.

Standard input and output are provided by channels that are named by predefined iden-
tifiers:
std_in: (characc & eof : compl) — comm std .out: characc .

Some obvious functional procedures are provided to convert between characters and their
integer codes:

char_to_code: char — int code_to_char:int — char,
and to convert character sequences in decimal notation into integers and real numbers:
charseq_to_int: charseq — int charseq_to_real: charseq — real .

The last two procedures ignore nondigits, except for leading minus signs and (in the case of
charseq_to_real) the first occurrence of a decimal point.
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One might expect the procedure that converts integers into their decimal representations
to have the type int — charseq, but this would be unsuitable since charseq is not a
datatype. Instead, there is another declarator:

int_to_charseq: int —
((charseq — comm) — comm
&(charseq — compl) — compl
& (charseq — int) — int
& (charseq — real) — real
& (charseq — bool) — bool
&(

charseq — char) — char) .

The application int_to_charseq n p converts the integer n to a character sequence giving its
decimal representation, and applies the procedure p to this character sequence.

The conversion of real numbers to a decimal representation is considerably more complex,
for several reasons: One must deal with both a fraction and exponent, the digit-length of the
fraction must be specified, and there is no universally accepted notation. The conversion is
implemented by the declarator

real_to_charseq: real — int —
((charseq — int — comm) — comm
&(charseq — int — compl) — compl
& (charseq — int — int) — int
& (charseq — int — real) — real
& (charseq — int — bool) — bool
& (

charseq — int — char) — char) .

Let r be a positive nonzero real number and f x 10” be a closest approximation to r such
that z is an integer, 0.1 < f < 1.0, and f has a decimal representation containing d digits
(to the right of the decimal point). Then real_to_charseq r d p applies the procedure p to
the digit sequence representing f (excluding the decimal point) and the integer z. (Notice
that z, as well as f, can depend upon d when r is slightly less than a power of ten.)

Clearly, if Forsythe grows beyond the experimental stage, it will be necessary for the
predefined identifiers to provide richer capabilities than are described above. To do this in
an “upward compatible” manner, one can obviously add new predefined identifiers. But the
type system provides another, more interesting possibility: One can lower the type of an
existing predefined identifier to a subtype of its original type, and give a new meaning to
the identifier, providing the implicit coercion induced by the subtype relation maps the new
meaning back into the old one.
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For example, one might change the type of newoutchannel to

newoutchannel: charseq —

(((characc & flush: comm) — comm) — comm
& ((characc & flush: comm) — compl) — compl) :

As before, the application newoutchannel s p would open the file s and apply the procedure
p to an output channel ¢, and each time that p assigned a character to ¢, the character would
be output to the file. But now p could also execute the command c. flush, which might flush
the output buffer.

7. Syntactic Sugar

Several abbreviations are provided to avoid repeating type information (or the absence
thereof) when several identifiers range over the same type. In types,

L1, «-. ,in:0 abbreviates 1:0& --- & ¢,: 6.

In abstractions
Alyy «vv ylniBy1e--18;. p abbreviates

At:Op 110, oo A2y 1o+ 10 p

and
Alyy ... ,ln. p abbreviates M. ... Aiy.p.

In recursive definitions
t1y .. sln:0 abbreviates ¢1:60, ... ,,:0.
In each of these cases, the identifiers ¢y, ..., ¢, must be distinct.
Also, to permit a more Algol-like appearance,

p1 = pe abbreviates pips.

Finally, although we treated them as independent constructions in Section 5, the defini-
tional forms can be regarded as abbreviations. First, recursive definitions can be desugared
in terms of nonrecursive definitions and the fixed-point operator. For a single definition, one
can give a straightforward desugaring:

letrecs;: 6, where(; = p;inp abbreviates let(; = rec:6;. Ayy. prinp.

However, a general rule that includes simultaneous recursion is more complex:

letrecey: 6, ... ,i,:0, wherey =py, ... ,t, = p,inp abbreviates
let: =rec:(41:01 & --- & ¢,:0,). A
letyy =0, ooyt =ttyin(ty = p1, oo ytn = Pn)
inlete = t.tq, ... ,tn = ttyinp,
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where ¢ is any identifier not occurring in the letrec definition.

Second, nonrecursive definitions can be desugared in terms of abstractions and applica-
tions (following Landin):

let;:60; =p1, ... ,tn:0, = pinp abbreviates ()\leﬂl. EED VY ) SRERY

This rule continues to make sense if, for some ¢, the types ; are omitted. But in this case
the rightside will contain too little information to satisfy the typechecker, even though the
leftside may be satisfactory.

8. Reduction Rules

As mentioned in the introduction, an operational way of describing Forsythe is to say that a
program is a phrase of type comm, in an enriched typed lambda calculus, that is executed
by first reducing the phrase to normal form (more precisely, to a possibly infinite or partial
normal form) and then executing the normal form, which will be a program in the simple
imperative language. Although we will not pursue this view in detail, it is useful to list some
of the reduction rules, which preserve the meanings of programs and thus provide insight
into their semantics. (We will ignore types in these rules, since they play no role in the
process of reduction.)

First there is the lambda-calculus rule of g-reduction:

(A pi)pz = (p1/t— p2)

where (p;/t — p2) denotes the result of substituting p, for the free occurrences of ¢ (except
as a type identifier or field name) in p;.

Then there is a rule for selecting fields:
(t=pe = p,
two rules for conditionals:
(if p; thenpy elseps)ps =  if p; then p; py else ps py

(if p; thenpy elseps).c = if p;thenp,.celseps.c,

a rule for nonrecursive definitions:
letvy =p1, ... ytn=puinp = (p/ta ... ytn = P1y -ov 3Pn)
and a rule for the fixed-point operator:

recp => p(recp).
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In addition, there are a number of rules dealing with the merging operation:
(p1, A p2)ps = (At p2)ps

(p1,t=pa)ps = p1p3
(p1,At. p2).d = pi.d
(p1,t=p2)t =  (L=p2)t
(pr,e=po)d’ = p1.i/ wheno# /.

(It should be noted that these rules are not complete; in particular, it is not clear how to
provide rules for reducing merges in contexts that require primitive types.)

The reduction rules make it clear that call by name pervades Forsythe. For example, if
p. is any phrase that does not contain free occurrences of ¢, and p; and p, are any phrases,
then
()““ pc)pl A

let:=pinp. = p.

(Ll = P1, L2 Epz).tl — yul
(61 =Pyl = Pz)-b2 = P2
hold even when p; or p, denote nonterminating computations.
Morever, call by name even characterizes the assignment operation, since assignments

are abbreviations for procedure calls. For example, assuming that z is an ordinary integer
variable (e.g. declared using newintvar),

(Ay.2:=3):=p and (Ady.z:=y+y):=p

would evaluate the expression p zero and two times respectively. This is probably the most
controversial design decision in Forsythe, since it makes the language, so to speak, more
Algol-like than Algol itself. It may degrade the efficiency with which the language can
be implemented but, as demonstrated in Sections 11 and 13, it leads to some interesting
programming techniques.

9. Examples of Procedures

In this and the next four sections, we provide a variety of examples of Forsythe programs.
Many of these examples are translations of Algol W programs given in [10], which the reader
may wish to compare with the present versions.

To define a proper procedure that sets its second parameter to the factorial of its first
parameter, we define fact to be the obvious command, abstracted on an integer expression
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n and an integer variable f:

let fact:int — intvar — comm = An. Af.

newintvar 0 Ak.

(f=1;whilek#ndo(k:=k+1;f:=kxf))

Here we have specified the necessary types in the nonrecursive definition, but instead we
could have specified them in the abstractions:

let fact = An:int. A\f:intvar.
newintvar 0 \k.

(f==1;whilek#ndo(ki=k+1;f:=Fkxf))

(Although Forsythe supports either method of specifying the types of nonrecursive proce-
dures, in these examples we will usually give types in definitions rather than in abstractions,
since this approach is more readable, and in some cases gives more efficient typechecking.)

This procedure has the usual shortcoming of call by name: It will repeatedly evaluate the
expression n. To remedy this defect, we replace n by a local variable (also called n) that is
initialized to the input parameter n. Notice that this is equivalent to the definition of call

by value in Algol 60.

let fact:int — intvar — comm = An. Af.
newintvar n An.

newintvar 0 k.

(f=1;whilek#ndo(ki=k+1;f:=kxf))

We can also modify this procedure to obtain the effect of calling f by result (as in
Algol W [4]). We replace f by a local variable, and then assign the final value of this local
variable to the parameter f, which now has type intacc, since it is never evaluated by the
procedure. '

let fact:int — intacc —» comm = An. \f.
newintvar n An. newintvar 1 Mocalf.
(newz’ntvar 0 Ak.
while k # n do (k:=k + 1 ; localf := k x localf);
fi= localf)

This transformation is sufficiently complex that it is worthwhile to encapsulate it as a pro-
cedure. We define

letinline newintvarres: int — intacc — (intvar — comm) — comm =
Ainit. Afin. Ab. newintvar init Mlocal. (b local ; fin := local)
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Then to call f by result we define

let fact:int — intacc — comm = An. Af.
newintvar n An. newintvarres 1 f Af.

newintvar 0 \k.

whilek #ndo (k:=k+1;f:=kXx[)

When placed within the scope of the definition of newintvarres, this definition of fact reduces
to to the previous one (except for the names of bound identifiers) and therefore has the same
meaning. Moreover, since newintvarres is defined by letinline, the two definitions of fact
will compile into the same machine code.

We can also define the traditional recursive function procedure for computing the fac-
torial. Here again we call n by value, illustrating the use of newintvar within an expres-
sion.

letrec fact:int — int
where fact = An. newintvar n An.
if n =0 then 1 else n X fact(n — 1)

Next, we give some examples of procedures that take advantage of call by name. In
the following function procedure for integer multiplication, call by name is used to provide
“short-circuit” evaluation,

letinline multiply:int — int — int = Am. An.if m = 0 then O else m x n

i.e. n will not be evaluated when m is zero. In a proper procedure akin to the Pascal repeat
command,

letinline repeat: comm — bool — comm = Ac. Ab. (¢; while ~bdo c)

b must be called by name to permit its repeated evaluation. (Both multiply and repeat are
such simple procedures that it is obviously worthwhile to compile them inline.)

Repeated evaluation is also crucial to the following program, where the call of the proce-
dure sum sets s to Yo_, X (1) x Y (i) by repeatedly evaluating X (z) x Y (¢) while increasing
the variable i:

letinline sum:intvar — int — comm = )i. Xe.
begins:=0;7i:=a—1;
while: <bdo (i:=¢4+1;s:=s5+¢€)
end

in sum 1 (X(z) X Y(z))

This way of using call by name, known as “Jensen’s device”, was illustrated in the original
Algol 60 Report [2, 3] by the exemplary procedure Innerproduct.
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Finally, we give two higher-order procedures akin to the for command:

letinline for:int — int — (int — comm) — comm = Al. Au. Ab.

whilek <udo (k:=k+1;bk),
fordown:int — int — (int — comm) — comm = Al. Au. Ab.

newintvar(u + 1) Ak. newintvar [ Al.
while k > ldo (k:=k—1;bk)
in for 09 Xi. s:=s+ X(1) x Y(¢)

Notice that, in these procedures, since the procedure b takes a parameter of type int, the
application b £ cannot change the value of k. Moreover, although this application can change
the values of the parameters [ and u, the interval iterated over is always determined by the

newintvar(l — 1) Ak. newintvar u Au.
initial values of these parameters.

Even though the procedures sum, for, and fordown are moderately complex, we have used
letinline to define them, since they evaluate some of their parameters repeatedly. When
a procedure is defined by letinline, not only are its calls compiled into inline code, but
also the execution or call of the parameters of the procedure. In particular, the expressions
i and X(2) X Y(2) in the call of sum will be executed inline, and the procedure Ai. s :=
s+ X(2) x Y(2) in the call of for will be called inline.

10. Escapes and Completions

The procedure escape declares a completion whose execution causes an exit from the call
of escape. A simple example of its use is the following procedure for searching an integer
function X (which might be an integer sequence or array) over the interval [ to u for a value
that is equal to y. If such a value is found, the procedure sets present to true and j to the
argument for which X (7) = y; otherwise it sets present to false.

let linsearch: (int — int) — int — int — int — boolacc — intacc — comm =
AX. Al Au. Ay. Apresent. Aj.
escape Aout.
(for Lu Mk if X (k) =y then (present := true; j := k; out) else skip;

present 1= false)
An alternative version of this procedure branches to one of two parameters depending upon

whether the search succeeds. If the search fails, it goes to the completion failure; if the

search succeeds, it goes to the completion procedure success, passing it the integer k such
that X(k) = y.
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let linsearch:
(int — int) — int — int — int — (int — compl) - compl — compl =
AX. Al Au. Ay. Asuccess. Afailure.
(for lu Ak. if X (k) = y then success k else skip ;failure)

This illustrates that, if a procedure always terminates by executing a completion, then a
call of the procedure will itself be a completion. This fact is relevant when the last action
of a procedure is to assign to a parameter, since an assignment to a parameter is syntactic
sugar for a call of the parameter. For example, the following is an alternative typing of the
procedure newintvarres introduced in the previous section:

letinline newintvarres: int — (int — compl) — (intvar - comm) — compl =
Aingt. Mfin. Ab. newintvar init Mocal. (b local ; fin := local)

This makes sense because the final assignment fin := local, really means fin local, which
will be a completion when fin has type int — compl. One can even use intersection
to give newintvarres both its conventional type and this variant in a single definition:

letinline newintvarres: int — (intacc — (intvar — comm) — comm
& (int — compl) — (intvar - comm) — compl) =
Ainit. Afin. Ab. newintvar init Alocal. (b local ; fin := local)

In addition to using escape, one can define completions recursively, to obtain the equiva-
lent of conventional labels. For example, the following procedure sets y to ™ (in time log n),
without doing unnecessary tests:

let power:int — int — intacc — comm = Az. An. Ay.
newintvar n A\k. newintvarres 1 y Ay. newintvar = Az.
escape Azr {k = 0}.

letrec tr, nz, ev, od, nzev: compl

where
tr {true} = if k = 0 then zr else nz,
nz {k # 0} =if krem?2 # 0 then od else nzev,
ev {even k} =if k£ = 0 then zr else nzev,
od {oddk}=k:=k—1;y:=y X z; ev,
nzev {k Z0ANeven k} =k:=k+2;2:=2x2z;nz

in tr
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The invariant of this program, i.e. the assertion that holds whenever any completion is
executed, is
yxz2F=z"ANk>0.

The additional assertions given as comments at the binding of each completion hold whenever
the corresponding completion is executed.

Notice that, in contrast to labels, one can never execute a completion by “passing through”
to its definition. Indeed, the meaning of the above program is independent of the order of
the definitions of completions.

11. Sequences and Arrays

As we remarked in Section 6, using the built-in procedures for declaring variable sequences
the programmer can define his own procedures for declaring more complex kinds of arrays.
For example, suppose we want Algol-like one-dimensional integer arrays with arbitrary lower
and upper bounds (denoted by the field names Il and ul). First we define abbreviations for
the relevant types:

lettype intarray = (int — int & I, ul: int),
intaccarray = (int — intacc & ll, ul: int),
intvararray = (int — intvar & I/, ul: int)

Then the following procedure serves to declare integer variable arrays, which are defined in
terms of integer sequences:
letinline newintvararray: int — int — (int — int) —
((intvararray — comm) — comm & (intvararray — compl) — compl

& (intvararray — int) — int & (intvararray — real) — real

& (intvararray — bool) — bool & (intvararray — char) — char) =
Al Au. dingt. Ab. newintvar [ Al. newintvar u Au.
newintvarseq(u — [ 4+ 1) ()\k. init(k + l)) AX.

b(Ae. X (k —1),1l = I,ul = u)

The sixfold intersection that is the type of newintvararray is similar to the type of

built-in declarators such as newintvarseq. Equally well, one could provide the necessary
type information in the abstractions rather than the definition, using the alternative opera-
tor:

letinline newintvararray = Al, u:int. \init: int — int.
Ab:intvararray — comm | intvararray — compl |intvararray — int |

intvararray — real | intvararray — bool | intvararray — char.

38




newintvar [ A\l. newintvar u u.

newintvarseq(u — { + 1)()\k. init(k + l)) AX.
b(Me. X (k—1),1l = 1,ul = u)

We can also define a procedure slice that, given an array and two integers, yields a
subsegment of the array with new bounds. The simplest definition is
letinline slice: ((int — int) — int — int — intarray

& (int — intacc) — int — int — intaccarray) =

AX. AL du (X, =1Lul =)

A safer alternative, which checks applications of the array against the new bounds, is

letinline slicecheck: ((int — int) — int — int — intarray

& (int — intacc) — int — int — intaccarray) =
AX. AL du. (A if | <k Ak < uthen X £k else error ‘subscript error’,
N=1ul =u)

The type of slice and slicecheck is extremely general:

o If the first argument has type int — int, or any subtype, such as intseq or intarray,
then the call will have type intarray.

o If the first argument has type int — intacc, or any subtype, such as intaccseq or
intaccarray, then the call will have type intaccarray.

o If the first argument has type int — intvar, or any subtype, such as intvarseq or
intvararray, then both of the previous cases will apply, and the call will have type
intarray & intaccarray, which is equivalent to intvararray.

The use of these procedures is illustrated by a program for sorting by finding max-
ima. First we define a procedure that sets j to the subscript of a maximum of an array

X:

letinline maz: intarray — intacc — comm = A X. )\j.
newintvar X.ll Aa. newintvar X.ul \b.
newintvarres a j Aj.
whilea < bdo (a:=a+1;if X a > X j then j := a else skip)
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(Here giving X the type intarray rather than intvararray indicates that maz will ex-
amine X but not assign to it.) Next comes a procedure for exchanging a pair of array
elements:

letinline ezchange: (int — intvar) — int — int — comm = AX. Ai. Aj.

newintvar i A\i. newintvar j Aj.
newintvar(X ) M. (X t:=X j; X j:=1)

(Giving X the type int — intvar indicates that ezchange does not evaluate bounds;
e.g. it would also be applicable to an integer variable sequence.) Then the sort procedure
is:

let mazsort: intvararray — comm = AX.
newintvar X.ll Aa. newintvar X.ul A\b.

while a < b do newintvar 0 Aj.
(mam(slice X ab)j;exchange X jb;b:=b— 1)

The above procedure contains a spurious initialization of the variable j. The purpose
of this variable is to accept the result of maz, but newintvar requires us to initialize it
before calling maz. However, this unpleasantness can be avoided by taking advantage of the
fact that assignments are really applications. By substituting the definition of newintvarres
into the definition of maz and reducing, we find that the definition of maz is equivalent
to

letinline maz: intarray — intacc — comm = AX. Aj.
newintvar X.l Aa. newintvar X.ul Ab.
newintvar a Alocal.
(While a<bdo
(a:=a+1;if X a > X local then local := a else skip);

7= local)

where j := local is syntactic sugar for 7 local. Thus the second parameter of maz can be
any procedure of type int — comm, i.e. any proper procedure accepting an integer; the
effect of maz will be to apply this procedure to the subscript of the maximum of X.

To avoid the spurious initialization, we make this parameter a.procedure that carries out
the appropriate exchange, dispensing with the variable j entirely:

let mazsort: intvararray — comm = A X.
newintvar X.ll Aa. newintvar X.ul \b.
while a < b do
(maz(slice X ab) Aj. exchange X jb;b:=b— 1)
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A similar use of “generalized call by result” occurs in the following definition of quick-
sort:

letinline partition: intvararray — int — intacc — comm = A X. Ar. Ap.
newintvar X.ll Aec. newintvar X.ul Ad. newintvar r Ar.
(while ¢ < d do
if Xc<rthenc:=c+1 else
if X d>rthend:=d—1 else
(ezchange X cd;c:=c+1;d:=d—1);
.

letrec quicksort: intvararray — comm

in

where quicksort = AX.
newintvar X.ll Aa. newintvar X.ul Ab.
if ¢ < b then
if X a > X bthen ezchange X a b else skip;
partition(slice X (a+1) (b— 1)) ((X a+Xb)+ 2) Ac.
(quicksort(slice X a (c—1)); quicksort(slice X c b))

else skip

As a further example of the power of declarators, we can define the type of triangular
arrays of real variables, along with an appropriate declarator (which, to keep the example
simple, initializes the array elements to zero):

lettype trivararray = ((int — int — realvar) & size: int) in
letinline newtrivararray:int —

((trivararray — comm) — comm & (trivararray — compl) — compl
& (trivararray — int) — int & (trivararray — real) — real
& (trivararray — bool) — bool & (trivararray — char) — char) =
An. Ab. newintvar n An. newrealvarseq ((n x(n+1))=+ 2) (Ak. 0) A X.
b(Xi. M.
if 0 <jAj<iAi<nthen X((ix(i+1)+2+j)
else error ‘subscript error’,

size = n) .
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12. Input and Output

The following program illustrates the facilities for input and output. It reads a sequence of
pairs of nonnegative integers from a file named ‘infile’ and writes the real quotient of each
pair in floating-point notation to a file named ‘outfile’. It is assumed that the integers in the
input file are separated by sequences of one or more nondigits; if there are an odd number
integers, the last is simply converted from integer to real.

Each number in the output is printed on a separate line, as a six-digit number greater or
equal to one and less than ten, times a power of ten. A result of zero is printed as 0.0, while
division by zero gives an error message.

newinchannel ‘infile’ Aic. newoutchannel ‘outfile’ Aoc.
letinline is_digit: char — bool = Ac. newcharvar ¢ Ae. #0 < ¢ A ¢ < #9,
writecharseq: charseq — comm = As. newintvar 0 Ai.
while ¢ < s.len do (oc:=si;1:=1+1)
in
letinline writereal: real - comm = Ar.
if r = 0 then writecharseq ‘0.0’ else
real_to_charseq r 6 As. Azx.
(oc =5 0; oc := #. ; writecharseq(Ai. s(1 + 1),len =5);
writecharseq ‘*10%x’ ; int_to_charseq (z — 1) writecharseq),
readint: compl — intacc — comm = Anonumber. Aa.
newcharvarseq 30 (Ak. #0) As. newintvar 0 Ai.
(repeat (ic(s 4, eof = nonumber)) (is_digit(s i));
escape Ae.
repeat (i 2= 1+ 1; ic(s ¢, eof = e)) (~ is_digit(s 1));
a := charseq_to_int(s,len = z))
in
escape Adone. loop
readint done Am.
readint (writereal m ; oc := #\n ; done) An.
if n = 0 then writecharseq ‘division by zero\n’ else
(writereal(m/n) ; oc := #\n).

Here repeat refers to the procedure defined in Section 9, while #0, #9, #., and #\n
are character constants denoting the digits 0 and 9, the decimal point, and the new-line
character.

The procedure readint uses a local character variable sequence to store the digit sequence
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being read, so that the number of digits is limited (to 29 in this example) by the length of the
sequence. In fact, it is possible to avoid this limitation by programming readint recursively
and using character sequences that are procedural functions rather than values of a variable
sequence:

letrec readint: compl — intacc — comm, readint!: charseq — intacc - comm
where
readint = Anonumber. \a.
ic ()\c. newcharvar ¢ Ac.
if is_digit c then readint! (Ai. c,len = 1) a else
readint nonumber a,
eof = nonumbe'r),
readint] = As. Aa. newintvar s.len Al. escape Xe.
ic ()\c. newcharvar ¢ Ac.
if is_digit c then readintl (\i.if i = [then celse si,len = [+ 1)a else
a := charseq_to_int s,

eof = a := charseq_to_int s; e) .

Here readint! s a reads digits until encountering a nondigit, appends these digits on
the right of the sequence s, converts the resulting sequence into an integer, and assigns the
integer to a. '

Unfortunately, however, this version of readint is neither perspicuous nor efficient — and
is not recommended as good programming style.

13. Data Abstraction with Objects

Perhaps the most important way in which Forsythe is more general than Algol is in its
provision of objects, which are a powerful tool for data abstraction. One can write abstract
programs in which various kinds of data are realized by types of objects, and then encapsulate
the representation of the data, and the expression of primitive operations in terms of this
representation, in declarators for the objects.

To illustrate this style of programming, we will develop a program for computing reacha-
bility in a finite directed graph. Specifically, we will define a procedure reachable that, given
a node z and a graph ¢, will compute the set of nodes that can be reached from z.

Throughout most of this development we will assume that “node” is a new data type;
eventually we will see how this assumption can be eliminated. Given node, we can define
a “set” to be an object denoting a finite set of nodes, whose fields (called methods in
the jargon of object-oriented programming) are procedures for manipulating the denoted
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set:

lettype set =
(member: node — bool
& insertnew:node — comm
& iter: (node — comm) — comm

& pick: comm — (node — comm) — comm)

The intention is that, if s is a set, z is a node, d is a procedure of type node — comm, and
e is a command, then:

o s. member x gives true if and only if z € s.
e s.insertnew z inserts x into s, providing z is not already in s.
e s.iter d applies d to each member of s.

o If s is empty then s. pick ed executes e; otherwise s. pick ed removes an arbitrary
member from s and applies d to the removed member.

In terms of set, we can give a naive version of the reachability procedure. The procedure
maintains a set ¢ of all nodes that have been found to be reachable from z, and a set u of
those members of ¢ whose immediate successors have yet to be added to t. (An immediate
~ successor of a node y is a node that can be reached from y in one step.) Thus its invariant
is

retAuCtA(Vyet)y isreachable fromz A (Vyet—u)gy Ct,

where g is a function of type node — set such that gy is the set of immediate successors of
y. This invariant implies that, when u is empty, ¢ is the set of all nodes reachable from .

In writing reachable, we assume that the parameter ¢ is the immediate-successor function
of the graph, and that the result is to be communicated by applying a procedural parameter
p to the final value of t:

let reachable:node — (node — set) — (set — comm) — comm =
Az. Ag. Ap. newset At. newset Au.
(t.insertnew T ; u.insertnew x ;
escape Aout. loop u.pick out \y. (gy).iter Az.
if ~t.member z then (t.insertnew z ; u.insertnew z)
_ else skip ;
pt)

Here newset is a declarator that creates an object of type set, initialized to the empty set.

Thus

newset : (set — comm) — comm .
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Actually, we could give newset the more general type
(set = comm) — comm & (set — compl) — compl,
which would allow reachable to have the more general type
node — (node — set) — ((set — comm) — comm & (set — compl) — compl) .

This generality, however, is unnecessary for our example and would distract from our argu-
ment. Thus, in this section, we will limit our declarators to the case where their calls are
commands.

Next, we refine the reachability procedure to provide greater flexibility for the represen-
tation of sets. In place of the object type set, we introduce different object types for the
different sets used in the program:

o setg for the sets produced by applying g,
e sett for the set ¢,

e setu for the set u.

The basic idea is to limit the fields of each of these object types to those procedures that
are actually needed by our program. However, even greater flexibility is gained by taking
advantage of the fact that the sets ¢ and u are declared at the same time, and that u is
always a subset of t. For this purpose, we introduce a “double declarator”,

newdoubleset : (sett — setu — comm) — comm

such that newdoubleset At:sett. Au:setu. C executes C after binding both ¢ and u to new
(initially empty) sets. Morever, to enforce the invariant u C ¢, we will eliminate the operation
t. insertnew and redefine u. insertnew to insert its argument (which must not already belong
to t) into both v and t¢.

Thus we have
lettype setg = (iter: (node — comm) — comm),
sett = (member: node — bool & iter: (node — comm) — comm),
setu = (insertnew: node — comm
& pick:comm — (node — comm) — comm)
in
let reachable:node — (node — setg) — (sett — comm) — comm =

Az. Ag. Ap. newdoubleset At. Au.

(u.insertnew x;

escape Aout. loop u.pick out \y. (gy).iter Az.

if ~t.member z then u.insertnew z else skip ;
p t)
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Notice that we have retained the iter field for objects of type sett, even though this procedure
is never used in our program. The reason is that the result of reachable is an object of type
sett, for which the user of reachable may need an iteration procedure.

Now we define the representation of ¢ and u by programming newdoubleset. Within this
declarator, we represent ¢ by a characteristic vector ¢, which is a boolean variable array that
is indexed by nodes, i.e. a procedure of type node — boolvar, such that

t={y|y:nodeAcy = true}.

We also represent both ¢ and u by a node variable sequence w that (with the help of
two integer variables ¢ and b) enumerates the members of these sets without duplication.

Specifically,
t={wk|0<k<b},

u={wk|a<k<bd}.

Thus we have

letinline newdoubleset: (sett — setu — comm) — comm = \p.
newboolvarnodearray(An. false) Ac. newnodevarseq N (Ak. dummynode) Aw.
newintvar 0 Aa. newintvar 0 \b.

p(member =,
iter = Ad. for 0 (b—1) Ak. d(w k))
(insertnew = An. (en:=true;wb:=n;b:=b+1),

pick = Ae. Ad. if a > bthen e else (d(wa);a:=a+ 1))

Here N is an integer expression giving an upper bound on the number of nodes, and
dummynode is an arbitrary entity of type node used to give a spurious initialization to
w. :

Next, we consider the representation of graphs. As far as reachable is concerned, a graph is
simply its immediate-successor function, of type node — setg. But the part of the program
that creates graphs must have some primitive procedure for graph construction. Thus we
make graph an object type with a field named addedge, denoting a procedure that, given
its source and destination nodes, adds an edge to the graph:

lettype graph = (node — setg & addedge: node — node — comm)

Notice that the immediate-successor function is a “nameless” field of a graph, so that a
graph can be passed directly to reachable.

We choose to represent a graph by an integer variable array succlist, indexed by nodes,
such that succlist n is a list of the immediate successors of n. The lists are represented by
a node variable sequence car and an integer variable sequence cdr. The integer variable k
gives the number of active list cells. The empty list is represented by —1.
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Thus the declarator for graphs is:

letinline newgraph: (graph — comm) — comm = Ap.
newintvarnodearray(An. — 1) Asucclist.
newnodevarseq E (Ak. dummynode) Acar.
newintvarseq E (Ak. — 1) Acdr. newintvar 0 Ak.
p()\n. (iter = Ad. newintvar(succlist n) Al.

while [ # —1 do (d(car ) ; 1 := cdr 1)),
addedge = Am. An.
(car k :=n; cdr k := succlist m ; succlist m ==k k =k + 1))

Here E is an upper bound on the number of edges in the graph.

Next, we consider extending our program so that, in addition to determining the set of
nodes that can be reached from z, it computes paths from z to each of these nodes. We
will alter reachable so that it gives its parameter p an additional argument r of type paths,
where an object of type paths provides two procedures for iterating over paths in forward
and backward directions:

lettype paths = (forward, backward:node — (node — comm) — comm)

If r is an object of type paths, y is a node reachable from z, and d is a procedure of type
node — comm, then r. forward y d or r.backward y d will apply d to each node on the
path from z to y.

Within reachable, each time an immediate successor z of y is inserted in ¢ and u, the path
to z formed by adding z to the already known path to y will be recorded in r. Thus, within
reachable, r will have the type

lettype pathsvar = (paths & record: node — node — comm)

where 7. record is a procedure such that r. record z y records the path to z formed by adding
z to the path to y. (In choosing the name pathsvar we are stretching the meaning of “var”.
Although an object of type pathsvar cannot be assigned to, in the conventional sense, it
still consists of an object of type paths intersected with an operation that changes the state
of the object.)

The new version of reachable is:

let reachable:node — (node — setg) — (sett — paths —» comm) — comm =
Az. Ag. Ap. newdoubleset A\t. A\u. newpathsvar z Ar.
(u.insertnew z;
escape Aout. loop u.pick out Ay. (gy).iter Az.

if ~t.member z then u.insertnew z ; r.record z y else skip ;
pt r)
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The representation of paths is defined within the declarator newpathsvar. A node variable
array link, indexed by nodes, is used to record the calls of record, so that link z = y holds
after a call of r. record z y. Then forward scans link recursively, while backward scans link
iteratively:

letinline newpathsvar: node — (pathsvar — comm) — comm = Az. Ap.

newnodevarnodearray(An. dummynode) Alink.

p(record = Az. Ay. link z :=y,
forward = An. Ad.
letrec scan: node — comm
where scan = An. newnodevar n An.
if eqnode n z then d z else (scan(link n) ; d n)
in scan n,

backward = An. Ad. newnodevar n An.

(while ~ egnode n z do (dn;n:=link n);d :c))

Here egnode is a primitive operation for comparing nodes. The initial parameter z of new-
pathsvar is the node from which all the paths emanate.

Finally, we must define the data type node. Forsythe lacks facilities for defining new
data types, but the effect of a new data type can be obtained by defining the relevant phrase
types, primitive operations, and declarators. This is easy if we use a trivial representation,
where a node is represented by an integer n such that 0 <n < N: ’

lettype node = int,
nodeacc = intacc,
nodevar = intvar

in

letinline dummynode = —1,
eqnode = Am:node. An: node. m = n,
newnodevar = newintvar,
newnodevarseq = newintvarseq,
newboolvarnodearray = newboolvarseq N,
newintvarnodearray = newintvarseq N,

newnodevarnodearray = newintvarseq N

Unfortunately, this way of defining node is limited by the fact that lettype definitions are
transparent rather than opaque. Thus typechecking would not detect an erroneous operation
that treated nodes as integers.
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To avoid this difficulty, one would like to have opaque type definitions in Forsythe. How-
ever, even in the absence of opaque definitions, one can still achieve a degree of data abstrac-
tion by defining nodes to be one-field objects containing integers, rather than “raw” integers.
This approach assures that the integrity of the abstraction node will not be violated by the
reachability program providing this program does not contain any occurrence of the field
name used in the definition of node.

This approach is embodied in the following definitions, in which nn is used as the “secret”
field name:

lettype node = (nn:int) in
lettype nodeacc = node — comm in
lettype nodevar = (node & nodeacc) in
lettype nodevarseq = (int — nodevar & len: int),
boolvarnodearray = node — boolvar,
intvarnodearray = node — intvar,
nodevarnodearray = node — nodevar
in
letinline dummynode = (nn = —1),
eqnode: node — node — bool = Am. An. m.nn = n.nn,
newnodevar:node — (nodevar — comm) — comm =
Ainit. Ab. newintvar (init.nn) Az. b(nn = z, Am. z := m.nn),
newnodevarseq: int — (int — node) — (nodevarseq — comm) — comm =
Al Xinit. Ab. newintvarseq [ ()\k. (init k)nn) Az.
b(/\k. (nn =z k,Am.z k:=m.nn),len = :v.len)
in
letinline newboolvarnodearray: (node — bool) —
(boolvarnodearray — comm) — comm =
Ainit. Ab. newboolvarseq N ()\k. init(nn = k)) Az. b()\n. w(nnn)),
newintvarnodearray: (node — int) —
(intvarnodearray — comm) — comm =
Ainit. Ab. newintvarseq N (/\k. init(nn = k)) Az. b()\n. a:(nnn)),
newnodevarnodearray: (node — node) —
(nodevarnodearray — comm) — comm =
Ainit. Ab. newnodevarseq N (/\k. init(nn = k')) Az, b(/\n. w(nnn))
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This approach to defining a new data type by defining the relevant phrase types can be
used to provide more interesting representations. As a final example, we define complex
numbers:

lettype complez = (r:real & i:real) in

lettype complezacc = complez — comm in

lettype complezvar = (complex & complezacc) in

letinline newcomplezvar: complez — (complezvar — comm) — comm =
Ainit. Abody. newrealvar init.r Arpart. newrealvar init.e Aipart.

body (7‘ = rpart,i = ipart,

Ac. newrealvar c.r At. (ipart := c.i; rpart := t)) .

Here newcomplervar is a declarator that represents a complex variable by two real variables
rpart and ipart. The last line defines an acceptor that sets the representation variables.
(Note the use of the temporary t to insure that both parts of the complex argument c are
evaluated before either representation variable is set.)

Of course, one would like to make real numbers a subtype of complex numbers, with
an implicit conversion that sets ipart to zero. In Forsythe, however, this is not permitted.
Unfortunately, there seems to be no way to allow such user-defined implicit conversions while
enforcing the relationships between conversions and procedures with multiple types that are
described in Section 4.

14. Other Publications Related to Forsythe

The genesis of Forsythe lies in the author’s general viewpoint about Algol-like languages [5],
and especially in the functor-category semantics of such languages developed by F. Oles [16,
17]. The language was first described in a preliminary report [1], of which this document is
a substantial revision. (The most important change in the language is that the requirements
for explicit type information have been made more flexible.)

There are several technical problems associated with intersection types. The semantics of
intersection as a pullback is not syntax-directed, since the meaning of ; & 6, depends upon
then meaning of 6, L1 6, as well as of §;, and of §,. A demonstration that the semantics is still
well-defined was given in an invited talk at the Logic in Computer Science Symposium [19],
but was never written up. A proof that the semantics is coherent, i.e. that different proofs
of the same typing do not lead to different meanings, was given in [20].

The functor-category semantics is the basis of a scheme for generating intermediate code

for Algol-like language [21].
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15. Conclusions and Future Research

There are a number of directions in which it would be desirable to extend Forsythe, providing
such extensions do not impact the uniformity of the language. We are currently investigating,
or hope to investigate, the following possibilities:

e Sums or disjunctions of phrase types. Unfortunately, sums of phrase types interact
with the conditional construction in a counterintuitive manner. Suppose, for example,
that comm + int is the binary sum of comm and int, with injection operations in,
of type comm — (comm + int) and in,; of type int — (comm + int), and a case
operation @ such that, for any phrase type 0, if p; has type comm — 6 and p, has
type int — @ then p; @ p, has type (comm + int) — 6, with the reduction rule

(pr®p2)(in; z) = pizx.

If application of the conditional construction to sum types is to make sense, then the
reduction

(p1 @ p2)(if bthening celsein, e) —> ifbthenp, celsep;e

must hold. Then, if the language is to exhibit reasonably uniform behavior, the similar
reduction

(p1 ® p2)(if bthen iny celsein; ¢) = ifbthenp, celsep, ¢
must also hold. But then, the reduction
iny(if bthencelsec) = ifbthenin; celsein; ¢
cannot hold, for otherwise we would have both
(p1 & p2) (inl(if bthencelse c')) => pi(if bthen celse ¢')
and
(1 &® pz)(z'nl(if bthen celse c')) = (p1 @ p2)(if bthen in; celsein; )

= ifbthenp; celsep; ¢,

which reduce the same phrase to two phrases that will have different meanings if the
procedure p; changes the value of b before executing its parameter. In particular,
the falsity of the reduction rule for injections and conditionals implies that injections
cannot be treated as implicit conversions.

o Polymorphic or universally quantified phrase types [22], possibly with bounded quan-
tification in the sense of [23]. In addition to providing polymorphic procedures, this
extension would also provide opaque type definitions. This kind of extension has been
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investigated by B. C. Pierce [18, 24], who found that there is no decision procedure for
type-checking bounded quantification, even in the absence of intersection types. On
the other hand, Pierce gave a practical algorithm for type-checking the combination
of bounded quantification and intersection types that seems to terminate in cases of
practical interest. He also gave a number of interesting examples of the descriptive
power of such a type system.

e Recursively defined phrase types.

e Enriched data types. Although the data types of Algol (and so far of Forsythe) are
limited to primitive, unstructured types, there would be no inconsistency in providing
a much richer variety of data types. The real question is which of the many possible
enrichments would provide additional expressive power without degrading efficiency of
execution.

e Coroutines.

e Alternative treatment of arrays. Array facilities along the lines of those described in
[25] would serve to avoid spurious array initializations, such as the initialization of w
in newdoubleset in Section 13. But it is not clear how this approach can be extended
to encompass multidimensional arrays.

On the other hand, there is also a direction in which it might be fruitful to restrict
Forsythe: to impose syntactic restrictions so that one can determine syntactically (in a fail-
safe manner) when phrases cannot interfere with one another. (Two phrases interfere if
their concurrent execution is indeterminate. For example, aliased variables interfere, as do
procedures that assign to the same global variables.) Such a restriction would open the door
for the concurrent, yet determinate, execution of noninterfering commands, as well as for a
form of block expression (in the sense of Algol W) that is restricted to avoid side effects.

Nearly two decades ago, I wrote a paper [26] proposing a scheme for restricting Algol-like
languages for this purpose. At the time, certain syntactic anomalies (described in the final
section of [26]) discouraged me from pursuing the matter further. But it is now clear that
these anomalies can be avoided [27, 28]. Moreover, it appears that this approach does not
raise insuperable type-checking complications.

However, the syntactic discipline described in these papers would still restrict Forsythe
uncomfortably. For example, one could not regard a := e as a e when a and e interfere, nor
could one write newintvar init b when init and b interfere. There are also problems with
recursive procedures that assign to global variables, and the use of completions is precluded.
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APPENDICES

A Lexical Structure

A Forsythe program, in the form actually read by a computer, is an ASCII character string
that is interpreted as a sequence of lezemes and separators. (After eliminating the separators,
the sequence of lexemes is interpreted according to the concrete syntax given in Appendix B.)

A lexeme is one of the following;:

o A keyword, which is one of the following character strings:

and begin  div do else
end error if iff implies
in let letinline letrec lettype
loop or rec rem seq

then where while

e An identifier, i.e. (id), which is a sequence of one or more letters, digits, and underscore
symbols that begins with a letter and is not a keyword.

In this report, keywords, and also identifiers that are used as type identifiers, are
typeset in boldface, but no such font distinction is made in the language actually read
by the computer.

¢ A natural-number constant, i.e. (nat const), which is a sequence of one or more digits.

e A real-number constant, i.e. (real const), which is a sequence of digits and decimal
points begining with a digit and containing exactly one decimal point; this sequence
may optionally be followed by a scale factor, which consists of the letter E or e, an
optional + or - sign, and a natural-number constant.

o A character constant, i.e. (char const), which is the character #, followed by a character
item, which is one of the following:
— a character other than the backslash \, the newline symbol, or the tab symbol,
— \\, denoting the backslash,
— \n, denoting a newline symbol,
— \t, denoting a tab symbol,
— \’, denoting the quotation mark °,

— a backslash, followed by three digits (which are interpreted as an ASCII code in
octal representation).
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e A string constant, i.e. (string const), which is a sequence of zero or more string items,
enclosed in the single quotation marks ¢ and ’, where a string item is one of the

following:
— a character other than the backslash \, the newline symbol, the tab symbol, or
the quotation mark ’,
— \\, denoting the backslash,
— \n, denoting a newline symbol,
— \t, denoting a tab symbol,
— \’, denoting the quotation mark ’,

— a backslash, followed by three digits (which are interpreted as an ASCII code in
octal representation),

— the backslash, followed by a blank, tab, or newline, followed by a sequence of zero
or more characters other than a backslash, followed by a backslash.

The last form of string item has no effect on the meaning of the string constant. It is
included to allow such constants to run over more than one line of a Forsythe program.

e A special symbol, which is one of the following characters or strings:

, ( ) : &
| \ - *
/ + - = <
> ~ ; -> ==
Kk ~= <= >= =

A separator is either a blank, a tab, a newline, or a comment, where a comment is either:

e a sequence of characters enclosed in the braces { and }. If the braces { and } occur
within the sequence of characters, they must be balanced.
e a percent sign J followed by a sequence of characters not containing a newline, followed

by a newline.

Except that they separate lexemes that would otherwise combine into a single lexeme

(when, for example, an identifier is followed by another identifier or a natural-number con-
stant), separators have no effect on the meaning or translation of a program. More precisely,
the program is interpreted by scanning the input characters from left to right, repeatedly re-
moving the longest string that is a lexeme or separator, and then eliminating the separators
from the resulting sequence.
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A number of the symbols used in this report (including the concrete syntax given in
Appendix B) are not available in ASCII. They must be translated into lexemes as follows:

publication ascii publication  ascii
— -> < <=
= == > >=
A \ ~ -
T " A and
X * \ or
-+ div = implies
# = & iff
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B Concrete Syntax

We will specify the concrete syntax of Forsythe by giving a context-free grammar that defines
“parsable” programs as sequences of lexemes. (The conversion of a string of input characters
into a sequence of lexemes, and also the transliteration of lexemes needed to fit the constraint
of the ASCII character set, are defined in Appendix A.) Notice that a parsable program is
not necessarily typable; typing is specified by the inference rules given previously and is
independent of the concrete syntax.

The one novelty of this syntax is its treatment of “heavy prefixes” such as the conditional
phrase. Such phrases are permitted to follow operators even when those operators have high
precedence. For example one can write

A xif BthenCelseD + FE

instead of

A x (if BthenCelseD + E).

To illustrate the treatment of heavy prefixes, consider augmenting a simple language of
arithmetic expressions,

(factor) ::= (id) | ({expression))
(term) ::= (factor) | (term) x (factor)

(expression) ::= (term) | (term) + (expression)
with a conditional expression, treated as a heavy prefix. The resulting grammar is:

(factor) ::= (id) | ({general expression))

(heavy factor) ::= if (general expression) then(general expression) else
(general expression)

term) ::= (factor) | (term) x (factor)

heavy term) ::= (heavy factor) | (term) x (heavy factor)

(

{

(expression) ::= (term) | (term) + (expression)

(heavy expression) ::= (heavy term) | (term) + (heavy expression)
(

general expression) ::= (expression) | (heavy expression)

In this simple example, a phrase beginning with a heavy prefix will extend to the next
right parenthesis (or to the end of the text). In the actual syntax of Forsythe, such phrases
extend to the next semicolon, comma, right parenthesis, or end.

The grammar of Forsythe is given by the following productions, in which we use (type n)
to denote type expressions, (p n) to denote phrases, and (hp n) to denote heavy phrases.
The integer n indicates the precedence level (with small n for high precedence). The symbols
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(id), (nat const), (real const), (char const), and (string const) denote the lexeme classes for
identifiers and various kinds of constants, as defined in Appendix A.

(program) ::= (p 16)

(type id) ::= (id)
(id list) ::= (id) | (id), (id list)

(type 0) ::= (type id) | ({type 3)) | begin(type 3) end
(type 1) ::= (type 0) | (type 0) — (type 1)

(type 2) ::= (type 1) | (id list) : (type 2)

(type 3) ::= (type 2) | (type 2) & (type 3)

(alt type) ::= (type 1) | (type 1) | {alt type)

(let list) ::= (id) = (p 15) | (id) : (type 1) = (p 15)
| (id) = (p 15), (let list) | (id) : (type 1) = (p 15), (let list)
letrec list) ::= (id list) : (type 1) | (id list) : (type 1), (letrec list)
where list) := (id) = (p 15) | (id) = (p 15), (where list)
lettype list) ::= (type id) = (alt type) | (type id) = (alt type), (lettype list)
seq list) ::= (p 15) | (p 15), (seq list)

{
{
{
{

(p 0) ::= (id) | (nat const) | (real const) | (char const) | (string const)
| ({p 16)) | begin(p 16) end
(hp 0) ::=if (p 16) then(p 16) else(p 13)
| while(p 16) do(p 13)
| loop(p 13)
| Adid list) : (alt type). (p 13)
| A(id list). (p 13)
| rec: (type 1). (p 13)
| let(let list) in(p 13) | letinline(let list) in{p 13)
| letrec(letrec list) where(where list) in(p 13)
| lettype(lettype list) in{p 13)

(p 1) == (p 0) | {p 1).(id)
(hp 1) ::= (hp 0)
(p2) == (p 1) |{p2){p1)|error(p 1)
| seq((seq list)) | seq begin(seq list) end

(hp 2) ::= (hp 1) | (p 2)(hp 1) | error(hp 1)
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3) u=

= o

exp op)
p4)u=

{p 6) ::=

(hp 6) ::=
(rel op) ::= =

(p7)u=
(hp 7) =:
(p 8) =
(hp 8) =
(p9) =
(hp 9) =:
(p 10) =
(hp 10) =:
(p 11) =:
(hp 11) =:
(p 12) =
(hp 12) =:
(p13) =:

(p 14) =
(p 15) =:
(p 16) =:
| (p
| (p

p 3) u=

(p 2) | {p 3){exp op)(p 2)
(hp 2) | {p 3)(exp op)(hp 2)
=T | ek

(p 3) | (p 4)(mult op)(p 3)

= (hp 3) | (p 4)(mult op)(hp 3)

yu=x|/|+|rem

i= (p 4) | (add op)(p 4) | {p 5){add op)(p 4)
::= (hp 4) | (add op)(hp 4) | (p 5)(add op)(hp 4)

(p 5) | (p 6)(rel op){p 5)
{hp 5) | (p 6)(rel op)(hp 5)
| #1<|<|>]>

(p 6) | ~(p 6)
= (hp 6) | ~(hp 6)
=N {P8A{PT)
=(hp 7) | (p 8) A (hp 7)
={p 8 |{p9)Vp8)
= (hp 8) | (p 9) V (hp 8)
=({p9)|
= (hp 9)
= (p 10} |
= (hp 10
|
1
|

|
(p 10) = (p 9)
| {p 10) = (hp 9)
(p 11} & (p 10)
)| (p 11) & (hp 10)
=(p 11) | (p 12) := (p 11)
= (hp 11)
(

= (p 12)

| (p 12) 1= (hp 11)
hp 12)

13) [{p 14) ; (p 13)

14) [ (id) = (p 15)

15) [ (p 16), (id) = (p 15)

), A(id list) : (alt type). (p 13)
), Aid list). (p 13)

p
p
b

{
{
{
16
16

61




C Type Checking

It is well-known that there is no algorithm for the complete inference of intersection types
[13, 14, 15]. Thus, Forsythe must require the programmer to provide a degree of explicit
type information. We have attempted to make this requirement as flexible as possible; as a
consequence, a precise description of where explicit types must occur is rather complicated.

The following is a grammatical schema (i.e. a van Wijngaarden grammar) for the abstract
syntax of a sublanguage of the language described earlier, such that every program in the
sublanguage contains enough type information to be typechecked (even though the program
may not be type-correct). The converse is nearly true, though (using phrases of type ns)
one can contrive programs that typecheck even though they do not satisfy this schema.

The nonterminal symbols (p,) and (seq list,) are indexed by nonnegative integers and
infinity, with co1 = 0o and 0—1 = 0. It is assumed that syntactic sugar (excepting defini-
* tional forms) has been eliminated as in Section 7, and that (type), (alt type), (lettype list),
and (letrec list) are defined as in Appendix B.

(program) ::= (py)

(unary op) =4 | — |~
(binary op) ::=T[++| x [/]| +|rem|+[—[=|#|<|<[|Z[>[A]V]=]&];

(let list) ::= (id) = (poo) | (id) : (type) = (po)

| id) = (poo), (let list) | (id) : (type) = (po), (let list)
(where list) ::= (id) = (po) | (id) = (py), (where list)
(seq list,,) ::= (P_1) | (Pn—1), (seq list,)

(pn) 1= (id) | (nat const) | (real const) | {char const) | (string const)
| if (py) then(p,) else(p,,)
| while(py) do(p,) | loop(p,)
| A(id) : (alt type). (pn—1) | (P,); A(id) : (alt type). (p,_q)
| rec : (type). (po)
| let(let list) in(p,,) | letinline(let list) in(p, )
| letrec(letrec list) where(where list) in(p,,)
| lettype(lettype list) in{p,,)
| (Pn)-(id)
| (P41} (Po)
| seq((seq list,,})
| (unary op)(po) | (po)(binary op){p)
| (id) = (p.) | (P,), (id) = (p,.)
(Po) ::= A(id). (po) | (Po), A(id). (Po) | error(p,)
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When the typechecker examines a phrase occurrence described by the nonterminal (p,,),
it is given a goal describing a set of potential simple types of the phrase that are relevant to
the typing of the enclosing program. When n = 0 this set is finite; when n = oo it is the set
of all simple types. Very roughly speaking, when n is nonzero and finite, it describes a set
of procedural types whose first n arguments are arbitrary. The final production displayed
above shows that certain phrases, especially abstractions without type information, are only
permitted in contexts where the goal describes a finite set.

To make this sketchy description more precise, we first define a simple type to be a type
with no occurrence of & except on the left of one or more arrows. More formally,

wi=pllow|ew (simple types)

To within equivalence, every type is an intersection of simple types. To express this fact,
we define the function s, which maps types into finite sets of simple types, as follows:

s p={p}
(0 —0)={0>w|wesb'}

s(ed)={rw|wesb}
sns = {}

3(01&02):.‘301U892,

and we define the function &, which maps finite sets of types into types, by
&{} =ns
&{0y =40
&{0s,... 00,0041} = 01 & (&{0s,...,0041}) whenn > 1.

(Strictly speaking, this definition only makes sense if one imposes some ordering on the types
01, ..., 0,41. But this ordering can be arbitrary, since & is commutative with respect to
the equivalence of types.)

It is easy to see, by induction on the structure of simple types, that s w = {w} for any
w. Moreover, it can be shown that, for any type § and any set o of simple types,

&(s0)~0 and s(&o)=o0.

It can also be shown that
6 <@ if and only if (V' € s8)(Fwesh)w <,

and that w < w' if and only if one of the following conditions holds:
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1. There are primitive types p and p’ such that

w=pandw' = p' and p <ppim p .

2. There are types 6, and 6] and simple types w; and wj such that

w="0, - w;and w' =0} — wj and 0] < 6; and wy < wj .

3. There are an identifier ¢ and simple types wy and w] such that

! ! /
w=tw andw = ¢w; and wy <wy .

These properties lead directly to an algorithm for computing the predicate § < ¢'.

As remarked earlier, a goal is an entity denoting a set of simple types. The simplest kind
of goal is a type 8, which denotes the set s §. But we also need goals that denote certain
infinite sets. Thus we define

yu=0|T| by|uy (goals)
and we extend the function s to map the new goals into the sets they represent:
sT=§8

s(by)={0—-w|0ecT andwes~y}

s(ey)={vw|wesy},
where S denotes the set of all simple types and 7 denotes the set of all types.

Finally, we define the typechecking function, t¢, which maps a type assignment, phrase,
and goal into a type. Within equivalence,

te(m,p,y) 2 &{w|wesyandrF pw}.

Thus te(w, p,v) will be a greatest lower bound of the set of simple types w that belong
to the set denoted by the goal v and also satisfy the typing # F p:w. When v = T
there is no contextual information, corresponding to bottom-up typechecking. At the other
extreme, top-down checking is also encompassed: The typing = F p:6 is valid if and only
if te(mw,p,0) < 6. (In fact, this subtype relation will hold if and only if the equivalence
te(m, p,0) ~ 6 holds, since the opposite subtyping 6 < te(r,p, 8) will always hold.)

Now we can give a precise description of the indexing in the abstract grammar at the
beginning of this appendix: The nonterminal (p.) describes those occurrences of phrases
that will be typechecked with a goal containing T, while the nonterminal (p,) describes
those occurrences that will be typechecked with a goal that does not contain T, but contains
n occurrences of b>.
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It is important to realize that, even though some goals are also types, goals play a different
role than types, and are therefore a different kind of entity. Specifically, the equivalence
relation on types is inappropriate for goals, since the function tc does not map equivalent
goals into equivalent types. For instance, int ~~ int & real, but (for any type assignment ),

te(r,0.5,int) =ns  and te(m,0.5,int & real) = real ,
which are not equivalent types.

The solution to this problem is to adopt a different equivalence relation 2 for goals:
vy iff (Vwesy) (T esy)w~w and (Vo' esy)(Twesy)w~w'.
For this relation, one can show that, if v = 4’ then te(w, p,v) =~ te(m, p, 7).

* Under certain circumstances, the typechecker can require time that is exponential in the
length of its input. This can happen because a single call tc(7,p,«) can cause more than
one recursive call for the same subphrase of p under any of the following circumstances:

1. p is a lettype declaration containing an alternative type construction with several
alternatives,

2. p is an explicitly typed abstraction containing an alternative type construction with
several alternatives,

3. pis an implicitly typed abstraction and + is an intersection of several procedural types.

One can expect the programmer to be aware of what is happening in the first two cases, since
the multiple alternatives would occur explicitly in the program. The last case, however, can
be more insideous and subtle. For instance, consider the call

tc(m,let ¢ = newintvar 0 Az. Bin---,comm).
Since ¢ is not explicitly typed, this leads to the call
te(w, newintvar 0 Az. B, T).
In turn, assuming that newintvar 0 has the type

(intvar — comm) — comm &(intvar — compl) — compl &(intvar — int) — int &

(intvar — real) — real &(intvar — bool) — bool &(intvar — char) — char,

this leads to the call

te(w, Az. B,intvar — comm & intvar — compl & intvar — int &

intvar — real & intvar — bool & intvar — char).
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Naively, one would expect this to leads to six calls that all typecheck the same abstraction

body:
te([7 | z:intvar], B,comm) tc([7 | z:intvar],B,compl) tc¢([7 | z:intvar], B,int)
te([ 7 | z:intvar], B, real) te([w | z:intvar], B,bool) tc([r | z:intvar], B, char).

But in fact, the typechecker will take advantage of the equivalence £ for goals to replace the

goal
intvar — comm & intvar — compl & intvar — int &

intvar — real & intvar — bool & intvar — char

by the equivalent goal
intvar — (comm & compl & int & real & bool & char) ,

which leads to the single call

te([7 | z:intvar ], B,comm & compl & int & real & bool & char) .

Although a full discussion of the subject is beyond the scope of this report, this example
illustrates how a careful choice of canonical forms for types and goals can enhance the
efficiency of typechecking. Among the programs in this report, the only implicitly typed
abstractions whose goals necessitate checking their body more than one are:

1. In Section 10, the binding of fin in the final definition of newintvarres,

2. In Section 11, the bindings of b in the initial definition of newintvararray and the
definition of newtrivararray,

3. In Section 11, the bindings of X in the definitions of slice and slicecheck.
Further experience will be needed, however, before we can be confident that our type-
checker is reasonably efficient in practice. As an illustration of how close we are to the edge

of disaster, notice that we have avoided the temptation of giving the declarator newintvar 0
the type

(intvar — comm) — comm &(intvar — compl) — compl &(int — int) — int &

(int — real) — real &(int — bool) — bool &(int — char) — char,

which makes explicit the fact that local integer variables cannot be assigned within expres-
sions. With this choice of type, the typechecking call

te(m, newintvar 0 Az. B,T)
would lead to two calls for B:
te([7 | z:intvar], B, comm & compl) te([7 | z:int], B, int & real & bool & char)
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so that typechecking would become exponential in the number of nested variable declarations.

Despite this cautionary example, we hope that our typechecker, perhaps with further
refinements, will be reasonably efficient in normal practice. It should be noted, however,
that worst-case inefficiency is inevitable. In fact, it can be shown that any typechecker for
Forsythe (or any other language using intersection types) is PSPACE-hard.

The proof is obtained by reducing the problem of evaluating quantified Boolean expres-
sions, which is known to be PSPACE-complete [29], to the type inference problem. The
reduction is obtained by translating a quantified Boolean expression B into a Forsythe

phrase B* as follows:

(B1V By)* = Or B} B;
(~B)* = Not B*
((Vz)B)* = Forall (Az : t | f. BY)
((3z)B)* = Exists (Az : tIf. B")
=z,

where t and f are distinct types, neither of which is a subtype of the other, and And, Or, Not,
Forall, and Euists are identifiers not occurring in the original expression. (For the particular
typechecker described in this appendix, one can omit the alternative type expressions t If.)
In addition a truth value b is translated into a type b* by

true® =t false™ =1 .
Let 8 be an assignment of truth values to the free variables of a quantified Boolean

expression, and let m be the type assignment that maps each of these variables  into (Sz)*,
and maps the additional variables of B* as follows:

r1(And)=F o f o D&E ot o D& E-F )&t ot o t)
1O =Ff > f>D&Eotot) &t ofot)&(tE—t—t)
n(Not) = (f — t) & (t — f)

m(Forall) = (f > f&t — ) > f) & ((f > &t — t) — f)
&((fot&t o) o f) & (> t&t—t)>t)

m(Baists) = (f > f&t = f) > £) & (f > f&t > t) - t)
| E((fot&t o) ot) & (fot&t—t)—t).

Then it is easy to see that B evaluates to b under the truth-value assignment A3 if and only
if the typing 7 - B* : b* is valid.
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One might object that this reduction maps closed quantified Boolean expressions into
open (and type-open) phrases of Forsythe, and thus might not imply the inefliciency of
typechecking closed phrases. This objection can be overcome, however, by enclosing B*
in the following declarations (which are based on the classical lambda-calculus encoding of
boolean values by the projections Az. A\y. z and Az. Ay. y):

lettype t = int — ns — int, f = ns — int — int
in
let And:(f 2 f > DH&f—-t-o0N&(t-f-oN&t-t—t)=
Ap. Ag. Az . dy.p(gzy)y
Ori(f o f-oN&f-ot-ot)&t-oFfot)&(t—t—ot)=
Ap. Ag. dz. dy.pz(gzy)
Not:(f - t) & (t = f) =
Ap. Az. Ay.pyx
in
letFomll:((f—>f&t——+f)—)f)&((f—>f&t—>t)—>f)
&(fot&tof)of)&(fothtot)ot)=
Ah. And (h Az. Xy. z) (h Az. Ay. y)
Exists:((f—»f&t—»f)——)f)&((f-—)f&tﬁt)et)
&(f-t&t—f)ot)&(fot&tot)ot) =
Ah. Or (h Az. Ay. z) (h Az. Ay. y)

in .-
To obtain completely explicit typing, one can annotate the abstractions here as follows:
z,y:int I ns

p,q:tIf
hf -flt-fIf-tlt—t.

This makes it clear that our lower bound applies even to the typechecking of programs with
completely explicit type information.
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